Publication:
Toward rational design of ionic liquid/metal-organic framework composites for efficient gas separations: Combining molecular modeling, machine learning, and experiments to move beyond trial-and-error

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.departmentKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorUzun, Alper
dc.contributor.kuauthorAydoğdu, Ahmet Safa
dc.contributor.kuauthorGülbalkan, Hasan Can
dc.contributor.kuauthorHabib, Nitasha
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-05-22T10:35:06Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractThis review presents a comprehensive overview of the emerging field of ionic liquid/metal-organic framework (IL/MOF) composites, which synergistically combine the unique properties of two material families, ILs and MOFs, for adsorption- and membrane-based gas separation applications. ILs, with their low volatility and tunable chemical properties, enhance the functionality of MOFs, which are highly porous materials characterized by their large surface areas and adjustable pore sizes. The effective integration of these two materials through various synthesis techniques has led to the development of novel IL/MOF composites exhibiting superior gas adsorption and separation capabilities, particularly for CO2 capture, compared to pristine MOFs. The use of these composites as fillers in polymers resulted in mixed matrix membranes with enhanced selectivities. This field is advancing rapidly, yet the design of IL/MOF composites still relies on a trial-and-error approach. After providing an overview of the current state-of-the-art in gas separation applications of IL/MOF composites, we specifically focused on the pivotal role of computational studies in both complementing and, beyond that, guiding the experimental design of novel IL/MOF composites. The importance of harnessing experiments, computational modeling, and machine learning methods to accelerate the discovery of new IL/MOF composites as adsorbents and membranes was discussed with recent examples. Finally, we addressed the current challenges and future opportunities in this rapidly evolving field, emphasizing the significant potential of IL/MOF composites to revolutionize the current gas adsorption and separation technologies.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1016/j.ccr.2025.216707
dc.identifier.embargoNo
dc.identifier.issn0010-8545
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105003232632
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29436
dc.identifier.urihttps://doi.org/10.1016/j.ccr.2025.216707
dc.identifier.volume539
dc.identifier.wos001480860200001
dc.keywordsGas adsorption
dc.keywordsIL/MOF composite
dc.keywordsIonic liquid (IL)
dc.keywordsMetal–organic framework (MOF)
dc.keywordsMixed matrix membranes (MMMs)
dc.keywordsMolecular simulations
dc.keywordsSeparation
dc.language.isoeng
dc.publisherElsevier
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofCoordination Chemistry Reviews
dc.subjectChemistry, inorganic and nuclear
dc.titleToward rational design of ionic liquid/metal-organic framework composites for efficient gas separations: Combining molecular modeling, machine learning, and experiments to move beyond trial-and-error
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameKeskin
person.familyNameUzun
person.familyNameAydoğdu
person.familyNameGülbalkan
person.familyNameHabib
person.givenNameSeda
person.givenNameAlper
person.givenNameAhmet Safa
person.givenNameHasan Can
person.givenNameNitasha
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isOrgUnitOfPublicationd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files