Publication:
Statistical geometry and Hessian structures on pre-Leibniz algebroids

dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorDoğan, Keremcan
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:02:40Z
dc.date.issued2022
dc.description.abstractWe introduce statistical, conjugate connection and Hessian structures on anti-commutable pre-Leibniz algebroids. Anti-commutable pre-Leibniz algebroids are special cases of local pre-Leibniz algebroids, which are still general enough to include many physically motivated algebroids such as Lie, Courant, metric and higher-Courant algebroids. They create a natural framework for generalizations of differential geometric structures on a smooth manifold. The symmetrization of the bracket on an anti-commutable pre-Leibniz algebroid satisfies a certain property depending on a choice of an equivalence class of connections which are called admissible. These admissible connections are shown to be necessary to generalize aforementioned structures on pre-Leibniz algebroids. Consequently, we prove that, provided certain conditions are met, statistical and conjugate connection structures are equivalent when defined for admissible connections. Moreover, we also show that for 'projected-torsion-free' connections, one can generalize Hessian metrics and Hessian structures. We prove that any Hessian structure yields a statistical structure, where these results are completely parallel to the ones in the manifold setting. We also prove a mild generalization of the fundamental theorem of statistical geometry. Moreover, we generalize a-connections, strongly conjugate connections and relative torsion operator, and prove some analogous results. © 2021 Published under licence by IOP Publishing Ltd.
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume2191
dc.identifier.doi10.1088/1742-6596/2191/1/012011
dc.identifier.issn1742-6588
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124986192&doi=10.1088%2f1742-6596%2f2191%2f1%2f012011&partnerID=40&md5=bd79811540f6f8c14598691d4bda12f7
dc.identifier.scopus2-s2.0-85124986192
dc.identifier.urihttp://dx.doi.org/10.1088/1742-6596/2191/1/012011
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8336
dc.keywordsAdmissible connections
dc.keywordsConjugate connection structures
dc.keywordsHessian structures
dc.keywordsPre-leibniz algebroids
dc.keywordsStatistical geometry equivalence classes
dc.keywordsGeometry
dc.keywordsTorsional stress
dc.keywordsAdmissible connection
dc.keywordsConnection structures
dc.keywordsGeneralisation
dc.keywordsGeometric structure
dc.keywordsGeometry structure
dc.keywordsHessian structure
dc.keywordsSmooth manifolds
dc.keywordsStatistical geometry
dc.keywordsStatistics
dc.languageEnglish
dc.publisherIOP Publishing Ltd
dc.sourceJournal of Physics: Conference Series
dc.subjectLie algebroid
dc.subjectGroupoid
dc.subjectMathematics
dc.titleStatistical geometry and Hessian structures on pre-Leibniz algebroids
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0001-7071-8585
local.contributor.kuauthorDoğan, Keremcan
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files