Publication:
Frost-EffNet: a deep learning model for frost detection in refrigeration systems

dc.contributor.departmentMARC (Manufacturing and Automation Research Center)
dc.contributor.kuauthorMehmood, Mussawir Ul
dc.contributor.kuauthorUr Rahman, Hammad
dc.contributor.kuauthorLazoğlu, İsmail
dc.contributor.kuauthorDeşdemir, Demet Baldan
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-12-31T08:21:36Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractFrost accumulation on the heat exchange units in refrigeration systems significantly impairs performance by restricting airflow, leading to increased power consumption. Despite its impact, the accurate and timely detection of frost buildup remains a challenging task, hindering the efficient initiation and control of defrost mechanisms. This study introduces Frost-EffNet, an innovative model to predict frost accumulation on refrigeration unit evaporator coils. Frost-EffNet is a modified version of the EfficientNet architecture. The model was validated using five distinct EfficientNet variants, with performance evaluated on a dataset of evaporator coil images. Comparative analysis was conducted by varying key hyperparameters to identify the optimal configuration for the best-performing model. Additionally, Grad-CAM (Gradient-weighted Class Activation Mapping) analysis was employed to highlight the areas of the evaporator coil that the model focused on for frost estimation, providing valuable insights into the model's decision-making process. The proposed Frost-EffNet model demonstrated high predictive accuracy, achieving 92.47 % accuracy on the test dataset, with a mean absolute error (MAE) of 0.11 mm. A comparative performance analysis revealed that Frost-EffNet outperforms other convolutional neural network (CNN) models in terms of accuracy, while also being computationally more efficient.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.indexedbyWOS
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1016/j.ijrefrig.2025.09.029
dc.identifier.embargoNo
dc.identifier.endpage425
dc.identifier.issn0140-7007
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105017421876
dc.identifier.startpage416
dc.identifier.urihttps://doi.org/10.1016/j.ijrefrig.2025.09.029
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31592
dc.identifier.volume180
dc.identifier.wos001588441200001
dc.keywordsArtificial Intelligence
dc.keywordsDeep learning
dc.keywordsFrost detection
dc.keywordsFrost thickness estimation
dc.keywordsImage processing
dc.keywordsRefrigeration automation
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational Journal of Refrigeration
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectThermodynamics
dc.titleFrost-EffNet: a deep learning model for frost detection in refrigeration systems
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameMehmood
person.familyNameUr Rahman
person.familyNameLazoğlu
person.familyNameDeşdemir
person.givenNameMussawir Ul
person.givenNameHammad
person.givenNameİsmail
person.givenNameDemet Baldan
relation.isOrgUnitOfPublication52df3968-be7f-4c06-92e5-3b48e79ba93a
relation.isOrgUnitOfPublication.latestForDiscovery52df3968-be7f-4c06-92e5-3b48e79ba93a
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscoveryd437580f-9309-4ecb-864a-4af58309d287

Files