Publication:
CharNER: character-level named entity recognition

dc.contributor.coauthorN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorKuru, Onur
dc.contributor.kuauthorCan, Ozan Arkan
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid179996
dc.date.accessioned2024-11-09T23:22:04Z
dc.date.issued2016
dc.description.abstractWe describe and evaluate a character-level tagger for language-independent Named Entity Recognition (NER). Instead of words, a sentence is represented as a sequence of characters. The model consists of stacked bidirectional LSTMs which inputs characters and outputs tag probabilities for each character. These probabilities are then converted to consistent word level named entity tags using a Viterbi decoder. We are able to achieve close to state-of-the-art NER performance in seven languages with the same basic model using only labeled NER data and no hand-engineered features or other external resources like syntactic taggers or Gazetteers. 
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.isbn9784-8797-4702-0
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85041135724&partnerID=40&md5=a8377e13966f0fb82fe1592856242121
dc.identifier.scopus2-s2.0-85041135724
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11000
dc.keywordsIndustrial plants
dc.keywordsCharacter level
dc.keywordsExternal resources
dc.keywordsLanguage independents
dc.keywordsNamed entities
dc.keywordsNamed entity recognition
dc.keywordsState of the art
dc.keywordsViterbi decoder
dc.keywordsWord level
dc.keywordsComputational linguistics
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics (ACL)
dc.sourceCOLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016: Technical Papers
dc.subjectComputer engineering
dc.titleCharNER: character-level named entity recognition
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0001-9690-0027
local.contributor.authorid0000-0002-7039-0046
local.contributor.kuauthorKuru, Onur
local.contributor.kuauthorCan, Ozan Arkan
local.contributor.kuauthorYüret, Deniz
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files