Publication:
CharNER: character-level named entity recognition

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorCan, Ozan Arkan
dc.contributor.kuauthorKuru, Onur
dc.contributor.kuauthorYüret, Deniz
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:22:04Z
dc.date.issued2016
dc.description.abstractWe describe and evaluate a character-level tagger for language-independent Named Entity Recognition (NER). Instead of words, a sentence is represented as a sequence of characters. The model consists of stacked bidirectional LSTMs which inputs characters and outputs tag probabilities for each character. These probabilities are then converted to consistent word level named entity tags using a Viterbi decoder. We are able to achieve close to state-of-the-art NER performance in seven languages with the same basic model using only labeled NER data and no hand-engineered features or other external resources like syntactic taggers or Gazetteers. 
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.isbn9784-8797-4702-0
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85041135724&partnerID=40&md5=a8377e13966f0fb82fe1592856242121
dc.identifier.scopus2-s2.0-85041135724
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11000
dc.keywordsIndustrial plants
dc.keywordsCharacter level
dc.keywordsExternal resources
dc.keywordsLanguage independents
dc.keywordsNamed entities
dc.keywordsNamed entity recognition
dc.keywordsState of the art
dc.keywordsViterbi decoder
dc.keywordsWord level
dc.keywordsComputational linguistics
dc.language.isoeng
dc.publisherAssociation for Computational Linguistics (ACL)
dc.relation.ispartofCOLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016: Technical Papers
dc.subjectComputer engineering
dc.titleCharNER: character-level named entity recognition
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorKuru, Onur
local.contributor.kuauthorCan, Ozan Arkan
local.contributor.kuauthorYüret, Deniz
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files