Publication:
Solution of the quantum fluid dynamical equations with radial basis function interpolation

dc.contributor.coauthorHu, X. G.
dc.contributor.coauthorHo, T. S.
dc.contributor.coauthorRabitz, H.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAşkar, Attila
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid178822
dc.date.accessioned2024-11-09T12:47:04Z
dc.date.issued2000
dc.description.abstractThe paper proposes a numerical technique within the Lagrangian description for propagating the quantum fluid dynamical (QFD) equations in terms of the Madelung field variables R and S, which are connected to the wave function via the transformation Psi= exp{(R + iS)/(h) over bar}. The technique rests on the QFD equations depending only on the form, not the magnitude, of the probability density rho = \psi\(2) and on the structure of R = (h) over bar/2 In rho generally being simpler and smoother than rho. The spatially smooth functions R and S are especially suitable for multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme. Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates that the present method is superior to the existing ones, especially, for its low storage requirement and its uniform accuracy. The advantage of the new algorithm is expected to increase fur higher dimensional systems to provide a practical computational tool.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume61
dc.formatpdf
dc.identifier.doi10.1103/PhysRevE.61.5967
dc.identifier.eissn1550-2376
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00795
dc.identifier.issn1063-651X
dc.identifier.linkhttps://doi.org/10.1103/PhysRevE.61.5967
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-0000089469
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2498
dc.identifier.wos87071200069
dc.keywordsTime-dependent Schrodinger
dc.keywordsWave-Packet dynamics
dc.keywordsData approximation scheme
dc.keywordsBound-state problems
dc.keywordsBohmian mechanics
dc.keywordsScattered data
dc.keywordsReactive scattering
dc.keywordsTrajectory method
dc.keywordsSystems
dc.keywordsPhotodissociation
dc.languageEnglish
dc.publisherAmerican Physical Society (APS)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/797
dc.sourcePhysical Review E
dc.subjectPhysics
dc.subjectMathematical physics
dc.titleSolution of the quantum fluid dynamical equations with radial basis function interpolation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0444-4787
local.contributor.kuauthorAşkar, Attila
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
797.pdf
Size:
135.72 KB
Format:
Adobe Portable Document Format