Publication:
Applications of bombieri-vinogradov type theorems to power-free integers

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAlkan, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:52:42Z
dc.date.issued2021
dc.description.abstractStudying a variant of a classical result of Walfisz on the number of representations of an integer as the sum of a prime number and a square-free integer with an extra additive constraint on the prime summand, we obtain an asymptotic formula for the number of representations of an integer N such that N - 1 is a prime number in the form p + N - p, where p is a prime number, N - p is square-free and p - 1 is cube-free. We improve the error term for the number of representations of an integer as the sum of a prime number and a k-free integer conditionally by assuming weaker forms of the Riemann hypothesis for Dirichlet L-functions. As a further application of our method, we find an asymptotic formula for the number of prime numbers p <= x such that p + 2y, 1 <= y <= 7, are all square-free. Our formula shows that a positive proportion of prime numbers leads to a longest possible progression of eight consecutive odd, square-free integers. A key ingredient in our approach is the Bombieri-Vinogradov theorem and its variant for sparse moduli due to Baier and Zhao which regulates the uniform distribution of prime numbers along certain short arithmetic progressions.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume164
dc.identifier.doi10.4064/cm7847-12-2019
dc.identifier.eissn1730-6302
dc.identifier.issn0010-1354
dc.identifier.quartileQ4
dc.identifier.urihttps://doi.org/10.4064/cm7847-12-2019
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14869
dc.identifier.wos601297000004
dc.keywordsPower-free integers
dc.keywordsPrime numbers in an arithmetic progression
dc.keywordsSparse moduli
dc.keywordsBombieri-Vinogradov theorem
dc.keywordsRiemann hypothesis for Dirichlet L-functions
dc.language.isoeng
dc.publisherArs Polona-Ruch
dc.relation.ispartofColloquium Mathematicum
dc.subjectMathematics
dc.titleApplications of bombieri-vinogradov type theorems to power-free integers
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAlkan, Emre
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files