Publication:
Effect of normal compression on the shear modulus of soft tissue in theological measurements

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

While the effect of normal compression on the measured shear material properties of viscoelastic solids has been already acknowledged in rheological studies in the literature, to our knowledge, no systematic study has been conducted to investigate this effect in detail to date. In this study, we perform two sets of experiments to investigate the effect of normal strain and strain rate on the dynamic shear moduli of bovine liver. First, we apply normal compressive strain to the cylindrical bovine samples up to 20% at loading rates of nu=0.000625, 0.00625, 0.0625, 0.315, 0.625 mm/s. Second, we perform torsional shear loading experiments, in the frequency range of (omega=0.1-10 Hz, under varying amounts of compressive pre-strain (epsilon=1%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20%) applied at the quasi-static loading rate of nu=0.000625 mm/s. The results of the experiments show that the shear moduli of bovine liver increase with compressive pre-strain. A hyper-viscoelastic constitutive model is developed and fit to the experimental data to estimate the true shear moduli of bovine liver for zero pre-compression. With respect to this reference value, the mean relative error in the measurement of shear moduli of bovine liver varies between 0.2% and 243.1% for the compressive pre-strain varying from e=1% to 20%. The dynamic shear modulus of bovine liver for compressive pre-strain Values higher than epsilon>2.5% are found to be statistically different than the true shear moduli estimated for zero compressive strain (p < 0.05). (C) 2015 Elsevier Ltd. All rights reserved.

Source

Publisher

Elsevier Science Bv

Subject

Engineering, Biomedical engineering, Materials science, Biomaterials

Citation

Has Part

Source

Journal Of The Mechanical Behavior Of Biomedical Materials

Book Series Title

Edition

DOI

10.1016/j.jmbbm.2015.05.011

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details