Publication:
Generalized Polytopic Matrix Factorization

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuauthorTatlı, Gökcan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid41624
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:49:40Z
dc.date.issued2021
dc.description.abstractPolytopic Matrix Factorization (PMF) is introduced as a flexible data decomposition tool with potential applications in unsupervised learning. PMF assumes a generative model where observations are lossless linear mixtures of some samples drawn from a particular polytope. Assuming that these samples are sufficiently scattered inside the polytope, a determinant maximization based criterion is used to obtain latent polytopic factors from the corresponding observations. This article aims to characterize all eligible polytopic sets that are suitable for the PMF framework. In particular, we show that any polytope whose set of vertices have only permutation and/or sign invariances qualifies for PMF framework. Such a rich set of possibilities enables elastic modeling of independent/dependent latent factors with combination of features such as relatively sparse/antisparse subvectors, mixture of signed/nonnegative components with optionally prescribed domains.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKUIS AI Lab AI Fellowship
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/ICASSP39728.2021.9413709
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03233
dc.identifier.isbn978-1-7281-7605-5
dc.identifier.issn1520-6149
dc.identifier.linkhttps://doi.org/10.1109/ICASSP39728.2021.9413709
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85115104763
dc.identifier.urihttps://hdl.handle.net/20.500.14288/652
dc.identifier.wos704288403098
dc.keywordsBounded component analysis
dc.keywordsNonnegative matrix factorization
dc.keywordsPolytopic matrix factorization
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10015
dc.sourceICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
dc.subjectAcoustics
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectSoftware engineering
dc.subjectElectrical and electronic engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleGeneralized Polytopic Matrix Factorization
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.authoridN/A
local.contributor.kuauthorErdoğan, Alper Tunga
local.contributor.kuauthorTatlı, Gökcan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10015.pdf
Size:
320.1 KB
Format:
Adobe Portable Document Format