Publication:
Multiscale modeling of poly(2-isopropyl-2-oxazoline) chains in aqueous solution

dc.contributor.coauthorOzaltin, Tuğba Furuncuoglu
dc.contributor.coauthorAviyente, Viktorya
dc.contributor.coauthorAtılgan, Canan
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorDemirel, Adem Levent
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:53:49Z
dc.date.issued2017
dc.description.abstractPoly(2-isopropyl-2-oxazoline) (PIPOX) is a thermo-responsive polymer exhibiting lower critical solution behaviour in water close to the human body temperature. PIPOX chains form crystalline nanoribbons in aqueous solutions above the critical temperature (T-c). Chain conformations in water prior to the crystallization is still much debated. In this study, a multiscale computational approach is used to investigate the conformations of PIPOX chains well-below and well-above T-C. Molecular dynamics (MD) simulations are performed to obtain single chain behaviour while dissipative particle dynamics (DPD) simulations are utilized to estimate the mesoscale morphologies of the polymer-solvent systems. Atomistic information is imposed on mesoscale beads by reverse-mapping, followed by MD simulations for relaxation. The most probable conformation obtained from the reverse-mapping is a helix with a pitch length of 15 monomers. The helical PIPOX chains are used to construct a triclinic unit cell that well-reproduce the experimental X-ray diffraction pattern for crystalline PIPOX nanoribbons formed in water above Tc. A pair of interacting helical PIPOX chains maintain their relative conformations at Tc, stabilized by hydrophobic interactions of the isopropyl side groups. The results are important in identifying a precursor helical conformation for PIPDX prior to crystallization in water above T. The new structure paves the way in using the interactions and phase transitions of thermoresponsive polymers for design purposes, in light of their potential in biomedical applications. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTug˘ba Furuncuog˘lu Özaltın acknowledges the TÜBITAK BIDEB graduate student scholarship. The Tübitak projects 113Z210 and 113T030 are gratefully acknowledged for providing the computational facilities and the necessary software. We thank the Bog˘aziçi University Research Grants under the project number 9840 for financial support.
dc.description.volume88
dc.identifier.doi10.1016/j.eurpolymj.2016.10.013
dc.identifier.eissn1873-1945
dc.identifier.issn0014-3057
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85008635945
dc.identifier.urihttps://doi.org/10.1016/j.eurpolymj.2016.10.013
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7262
dc.identifier.wos396952500048
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofEuropean Polymer Journal
dc.subjectPolymer science
dc.titleMultiscale modeling of poly(2-isopropyl-2-oxazoline) chains in aqueous solution
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorDemirel, Adem Levent
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Chemistry
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files