Publication:
Contact handle decompositions

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÖzbağcı, Burak
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:42:12Z
dc.date.issued2011
dc.description.abstractWe review Giroux’s contact handles and contact handle attachments in dimension three and show that a bypass attachment consists of a pair of contact 1 and 2-handles. As an application we describe explicit contact handle decompositions of infinitely many pairwise non-isotopic overtwisted 3-spheres. We also give an alternative proof of the fact that every compact contact 3-manifold (closed or with convex boundary) admits a contact handle decomposition, which is a result originally due to Giroux.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipMarie Curie International Outgoing Fellowship
dc.description.versionAuthor's final manuscript
dc.description.volume158
dc.identifier.doi10.1016/j.topol.2011.01.020
dc.identifier.eissn1879-3207
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00011
dc.identifier.issn0166-8641
dc.identifier.quartileN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2296
dc.identifier.wos287904000008
dc.keywordsContact handle
dc.keywordsContact handle attachment
dc.keywordsContact handle decomposition
dc.keywordsPartial open book decomposition
dc.keywordsContact three-manifold with convex boundary
dc.language.isoeng
dc.publisherElsevier
dc.relation.grantno107T053
dc.relation.grantno236639
dc.relation.ispartofTopology and its Applications
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1042
dc.subjectMathematics
dc.titleContact handle decompositions
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÖzbağcı, Burak
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1042.pdf
Size:
226.58 KB
Format:
Adobe Portable Document Format