Publication:
Wireless nonresonant stimulation of neurons on a magnetoelectric film surface

dc.contributor.coauthorAydin, Asli
dc.contributor.coauthorJahanshahi, Ali
dc.contributor.coauthorEsmaeili-Dokht, Pouria
dc.contributor.coauthorHan, Mertcan
dc.contributor.coauthorGardi, Gaurav
dc.contributor.coauthorYu, Y.
dc.contributor.coauthorSoon, Ren Hao
dc.contributor.coauthorTemel, Yasin
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:25:51Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractWireless neural interfaces are emerging as a minimally invasive treatment option for neurological disorders. Among the wireless technologies, magnetically powered systems are effective for targeting deep brain sites. However, dependence on high-frequency electromagnetic fields in such systems limits their safe implementation. In this study, we demonstrate the use of millimeter-scale magnetoelectric (ME) films as a direct neural interface for wireless neurostimulation, powered by static and alternating magnetic fields in the nonresonant regime (10 hertz). To accomplish this objective, electrical potential trends of the ME films under varying low-frequency magnetic fields are investigated and used to demonstrate neural stimulation by calcium imaging on primary neurons in vitro via a capacitive-like charge injection mechanism. In addition, electrical polarization orientation is revealed as a critical design parameter in direct neuron-ME interfaces. These findings collectively demonstrate the potential of nonresonant powering of ME films as a promising minimally invasive wireless neural stimulation technique.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.indexedbyWOS
dc.description.openaccessAll Open Access; Gold Open Access
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1126/sciadv.adx6829
dc.identifier.embargoNo
dc.identifier.issn2375-2548
dc.identifier.issue42
dc.identifier.pubmed41105780
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105019114720
dc.identifier.startpageeadx6829
dc.identifier.urihttps://doi.org/10.1126/sciadv.adx6829
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31882
dc.identifier.volume11
dc.identifier.wos001596837700008
dc.keywordsDeep brain-stimulation
dc.keywordsNeural stimulation
dc.keywordsNanomaterials
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofScience Advances
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectEngineering
dc.subjectTechnology
dc.titleWireless nonresonant stimulation of neurons on a magnetoelectric film surface
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameSitti
person.givenNameMetin
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files