Publication:
Machine learning helps identify CHRONO as a circadian clock component

dc.contributor.coauthorAnafi, Ron C.
dc.contributor.coauthorLee, Yoo
dc.contributor.coauthorSato, Trey K.
dc.contributor.coauthorVenkataraman, Anand
dc.contributor.coauthorRamanathan, Chidambaram
dc.contributor.coauthorHughes, Michael E.
dc.contributor.coauthorBaggs, Julie E.
dc.contributor.coauthorGrowe, Jacqueline
dc.contributor.coauthorLiu, Andrew C.
dc.contributor.coauthorKim, Junhyong
dc.contributor.coauthorHogenesch, John B.
dc.contributor.kuauthorKavaklı, İbrahim Halil
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid40319
dc.date.accessioned2024-11-09T12:13:00Z
dc.date.issued2014
dc.description.abstractOver the last decades, researchers have characterized a set of ‘‘clock genes’’ that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Institute of Neurological Disorders and Stroke
dc.description.sponsorshipDefense Advanced Research Projects Agency
dc.description.sponsorshipAmerican Sleep Medicine Foundation
dc.description.sponsorshipNational Institute on Aging
dc.description.sponsorshipNational Heart, Lung, and Blood Institute
dc.description.sponsorshipPenn Genome Frontiers Institute under a HRFF grant
dc.description.sponsorshipPennsylvania Department of Health
dc.description.versionPublisher version
dc.description.volume12
dc.formatpdf
dc.identifier.doi10.1371/journal.pbio.1001840
dc.identifier.eissn1545-7885
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00152
dc.identifier.issn1544-9173
dc.identifier.linkhttps://doi.org/10.1371/journal.pbio.1001840
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84900400446
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1207
dc.identifier.wos335458800012
dc.keywordsAtomic-force microscope
dc.keywordsQuartz-crystal microbalance
dc.keywordsFrequency-response
dc.keywordsBlood-coagulation
dc.keywordsViscous fluids
dc.keywordsPoint
dc.keywordsCare
dc.keywordsCantilevers
dc.keywordsDevices
dc.keywordsSleep-phase syndrome
dc.keywordsGene-expression
dc.keywordsFeedback loop
dc.keywordsNegative limb
dc.keywordsGenome-wide
dc.keywordsMouse clock
dc.keywordsTranscription
dc.keywordsMice
dc.keywordsMetabolism
dc.keywordsMechanism
dc.languageEnglish
dc.publisherPublic Library of Science
dc.relation.grantno1R01NS054794-06
dc.relation.grantnoDARPA-D12AP00025
dc.relation.grantno2P01AG017628-11
dc.relation.grantno5K12HL090021-05
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1181
dc.sourcePLOS Biology
dc.subjectBiochemical research methods
dc.subjectBiochemistry and molecular biology
dc.titleMachine learning helps identify CHRONO as a circadian clock component
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6624-3505
local.contributor.kuauthorKavaklı, İbrahim Halil

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1181.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format