Publication:
Relevance feedback exploiting query-specific document manifolds

dc.contributor.coauthorWang, Chang
dc.contributor.coauthorSzummer, Martin
dc.contributor.kuauthorYılmaz, Emine
dc.date.accessioned2024-11-09T23:05:37Z
dc.date.issued2011
dc.description.abstractWe incorporate relevance feedback into a learning to rank framework by exploiting query-specific document similarities. Given a few judged feedback documents and many retrieved but unjudged documents for a query, we learn a function that adjusts the initial ranking score of each document. Scores are fit so that documents with similar term content get similar scores, and scores of judged documents are close to their labels. By such smoothing along the manifold of retrieved documents, we avoid overfitting, and can therefore learn a detailed query-specific scoring function with several dozen term weights.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipSpecial Interest Group on Information Retrieval (ACM SIGIR)
dc.description.sponsorshipACM SIGWEB
dc.identifier.doi10.1145/2063576.2063864
dc.identifier.isbn9781-4503-0717-8
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-83055186801
dc.identifier.urihttps://doi.org/10.1145/2063576.2063864
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8842
dc.keywordsManifold learning
dc.keywordsRelevance feedback document similarity
dc.keywordsFeedback documents
dc.keywordsLearning to rank
dc.keywordsManifold learning
dc.keywordsOverfitting
dc.keywordsRelevance feedback
dc.keywordsRetrieved documents
dc.keywordsScoring functions
dc.keywordsTerm weight
dc.keywordsKnowledge management
dc.keywordsFeedback
dc.language.isoeng
dc.publisherACM
dc.relation.ispartofInternational Conference on Information and Knowledge Management, Proceedings
dc.subjectComputer engineering
dc.titleRelevance feedback exploiting query-specific document manifolds
dc.title.alternativeÇeşitleme birleşimli güç kontrollü MIMO-MAC kanal kapasitesi
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorYılmaz, Emine

Files