Publication:
Opportunities and utilization of branching and step-out behavior in magnetic microswimmers with a nonlinear response

dc.contributor.coauthorBachmann, Felix
dc.contributor.coauthorGiltinan, Joshua
dc.contributor.coauthorCodutti, Agnese
dc.contributor.coauthorKlumpp, Stefan
dc.contributor.coauthorFaivre, Damien
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T12:20:08Z
dc.date.issued2021
dc.description.abstractMicroswimmers are smart devices with potential applications in medicine and biotechnology at the micrometer-scale. Magnetic micropropellers with their remote control via rotating magnetic fields are especially auspicious. Helicoidal propellers with a linear velocity-frequency dependence emerged as the standard propulsion mechanism over the last decade. However, with their functions becoming more pivotal on the way to practical uses, deviations in shape and swimming behavior are inevitable. Consequently, propellers with nonlinear velocity-frequency relationships arise that not only pose different challenges but also offer advanced possibilities. The most critical nonlinearities are the wobbling behavior with its solution branching that has potential for bimodal swimming and the swimming characteristics in the step-out regime that are essential for selection and swarm control. Here, we show experimentally and with numerical calculations how the previously unpredictable branching can be controlled and, thus, becomes utilizable with an example 3D-printed swimmer device. Additionally, we report how two step-out modes arise for propellers with a nonlinear velocity-frequency dependence that have the potential to accelerate future microswimmer sorting procedures.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue17
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipDeutsche Forschungs-gemeinschaft
dc.description.sponsorshipPriority Program 1726 Microswimmers
dc.description.versionPublisher version
dc.description.volume118
dc.identifier.doi10.1063/5.0045454
dc.identifier.eissn1077-3118
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02795
dc.identifier.issn0003-6951
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85104935925
dc.identifier.urihttps://doi.org/10.1063/5.0045454
dc.identifier.wos677696000002
dc.keywordsNon linear dynamics
dc.keywordsSoft matter
dc.keywordsMagnetic devices
dc.keywords3D printing
dc.keywordsDrug delivery
dc.keywordsSwarming motility
dc.keywordsRobotics
dc.keywordsMagnetic dipole moment
dc.keywordsMotion detection
dc.keywordsComputer simulation
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.grantnoFA 835/7-1
dc.relation.grantnoKL 818/2-1
dc.relation.ispartofApplied Physics Letters
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9796
dc.subjectPhysics
dc.titleOpportunities and utilization of branching and step-out behavior in magnetic microswimmers with a nonlinear response
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9796.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format