Publication:
All optical control of magnetization in quantum confined ultrathin magnetic metals

dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorOnbaşlı, Mehmet Cengiz
dc.contributor.kuauthorNaseem, Muhammad Tahir
dc.contributor.kuauthorZanjani, Saeedeh Mokarian
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid1674
dc.contributor.yokid258783
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:46:38Z
dc.date.issued2021
dc.description.abstractAll-optical control dynamics of magnetization in sub-10 nm metallic thin films are investigated, as these films with quantum confinement undergo unique interactions with femtosecond laser pulses. Our theoretical analysis based on the free electron model shows that the density of states at Fermi level (DOSF) and electron-phonon coupling coefficients (G(ep)) in ultrathin metals have very high sensitivity to film thickness within a few angstroms. We show that completely different magnetization dynamics characteristics emerge if DOSF and G(ep) depend on thickness compared with bulk metals. Our model suggests highly efficient energy transfer from femtosecond laser photons to spin waves due to minimal energy absorption by phonons. This sensitivity to the thickness and efficient energy transfer offers an opportunity to obtain ultrafast on-chip magnetization dynamics.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipERC-2020-Starting Grant
dc.description.sponsorshipSKYNOLIMIT
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.description.volume11
dc.formatpdf
dc.identifier.doi10.1038/s41598-021-95319-6
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03109
dc.identifier.issn2045-2322
dc.identifier.linkhttps://doi.org/10.1038/s41598-021-95319-6
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85111982518
dc.identifier.urihttps://hdl.handle.net/20.500.14288/533
dc.identifier.wos684439300035
dc.keywordsDemagnetization
dc.keywordsSpin Dynamics
dc.keywordsMagnetic switching
dc.languageEnglish
dc.publisherNature Publishing Group (NPG)
dc.relation.grantno948063
dc.relation.grantno120F230
dc.relation.grantno117F416
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9769
dc.sourceScientific Reports
dc.subjectMultidisciplinary sciences
dc.subjectScience and technology
dc.titleAll optical control of magnetization in quantum confined ultrathin magnetic metals
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9134-3951
local.contributor.authorid0000-0002-3554-7810
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorOnbaşlı, Mehmet Cengiz
local.contributor.kuauthorNaseem, Muhammad Tahir
local.contributor.kuauthorZanjani, Saeedeh Mokarian
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9769.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format