Publication:
Transfer of spin squeezing and particle entanglement between atoms and photons in coupled cavities via two-photon exchange

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

Language

English

Journal Title

Journal ISSN

Volume Title

Abstract

We examine transfer of particle entanglement and spin squeezing between atomic and photonic subsystems in optical cavities coupled by two-photon exchange. Each cavity contains a single atom, interacting with cavity photons with a two-photon cascade transition. Particle entanglement is characterized by evaluating optimal spin squeezing inequalities for the cases of initially separable and entangled two-photon states. It is found that particle entanglement is first generated among the photons in separate cavities and then transferred to the atoms. The underlying mechanism is recognized as an intercavity two-axis twisting spin squeezing interaction, induced by two-photon exchange, and its optimal combination with the intracavity atom-photon coupling. Relative effect of nonlocal two-photon exchange and local atom-photon interactions of cavity photons on the spin squeezing and entanglement transfer is pointed out.

Source:

Journal of the Optical Society of America B - Optical Physics

Publisher:

Optical Society of America (OSA)

Keywords:

Subject

Optics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyrights Note

0

Views

0

Downloads

View PlumX Details