Publication:
Perfect hexagon triple systems

dc.contributor.coauthorLindner, CC
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKüçükçifçi, Selda
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:03:37Z
dc.date.issued2004
dc.description.abstractThe graph consisting of the three 3-cycles (a, b, c), (c, d, e), and (e, f, a), where a, b, C, d, e, and f are distinct is called a hexagon triple. The 3-cycle (a,c,e) is called an "inside" 3-cycle; and the 3-cycles (a,b,c), (c,d,e), and (e,f,a) are called "outside" 3-cycles. A 3k-fold hexagon triple system of order n is a pair (X, C), where C is an edge disjoint collection of hexagon triples which partitions the edge set of 3kK(n). Note that the outside 3-cycles form a 3k-fold triple system. If the hexagon triple system has the additional property that the collection of inside 3-cycles (a, c, e) is a k-fold triple system it is said to be perfect. A perfect maximum packing of 3kK(n) with hexagon triples is a triple (X, CL), where C is a collection of edge disjoint hexagon triples and L is a collection of 3-cycles such that the insides of the hexagon triples plus the inside of the triangles in L form a maximum packing of kK(n) with triangles. This paper gives a complete solution (modulo two possible exceptions) of the problem of constructing perfect maximum packings of 3kK(n) with hexagon triples. (C) 2003 Elsevier B.V. All rights reserved.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue44986
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume279
dc.identifier.doi10.1016/S0012-365X(03)00278-4
dc.identifier.eissn1872-681X
dc.identifier.issn0012-365X
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-1342308411
dc.identifier.urihttps://doi.org/10.1016/S0012-365X(03)00278-4
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8488
dc.identifier.wos220121600020
dc.keywordsHexagon triple system
dc.keywordsPerfect packing
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofDiscrete Mathematics
dc.subjectMathematics
dc.titlePerfect hexagon triple systems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKüçükçifçi, Selda
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files