Publication:
Evaluation of audio features for audio-visual analysis of dance figures

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuauthorDemir, Yasemin
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokid34503
dc.contributor.yokid107907
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:00:43Z
dc.date.issued2008
dc.description.abstractWe present a framework for selecting best audio features for audio-visual analysis and synthesis of dance figures. Dance figures are performed synchronously with the musical rhythm. They can be analyzed through the audio spectra using spectral and rhythmic musical features. In the proposed audio feature evaluation system, dance figures are manually labeled over the video stream. The music segments, which correspond to labeled dance figures, are used to train hidden Markov model (HMM) structures to learn spectral audio patterns for the dance figure melodies. The melody recognition performances of the HMM models for various spectral feature sets are evaluated. Audio features, which are maximizing dance figure melody recognition performances, are selected as the best audio features for the analyzed audiovisual dance recordings. In our evaluations, mel-scale cepstral coefficients (MFCC) with their first and second derivatives, spectral centroid, spectral flux and spectral roll-off are used as candidate audio features. Selection of the best audio features can be used towards analysis and synthesis of audio-driven body animation.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipSwiss National Science Foundation (SNSF
dc.description.sponsorshipInteractive Multimodal Information Management (IM)
dc.description.sponsorshipSIMILAR - Network of Excellence
dc.description.sponsorshipCanton de Vaud
dc.identifier.doiN/A
dc.identifier.issn2219-5491
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84863761125andpartnerID=40andmd5=35c9d16851e841980583394cbe735d2a
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84863761125
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15854
dc.keywordsAnalysis and synthesis
dc.keywordsAudio features
dc.keywordsAudio-driven body animation
dc.keywordsAudiovisual analysis
dc.keywordsCepstral coefficients
dc.keywordsHMM models
dc.keywordsMelody recognition
dc.keywordsMusic segments
dc.keywordsMusical features
dc.keywordsMusical rhythm
dc.keywordsSecond derivatives
dc.keywordsSpectral feature
dc.keywordsSpectral flux
dc.keywordsVideo streams
dc.keywordsAnimation
dc.keywordsHidden markov models
dc.keywordsSignal processing
dc.keywordsSpeech recognition
dc.keywordsVideo streaming
dc.keywordsAudio acoustics
dc.languageEnglish
dc.publisherIEEE
dc.sourceEuropean Signal Processing Conference
dc.subjectElectrical electronics engineering
dc.subjectComputer engineering
dc.titleEvaluation of audio features for audio-visual analysis of dance figures
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-7515-3138
local.contributor.authoridN/A
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorDemir, Yasemin
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files