Publication:
A blind separation approach for magnitude bounded sources

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T23:37:01Z
dc.date.issued2005
dc.description.abstractA novel blind source separation approach for channels with and without memory is introduced. The proposed approach makes use of pre-whitening procedure to convert the original convolutive channel into a lossless and memoryless one. Then a blind subgradient algorithm, which corresponds to an l(infinity) norm based criterion, is used for the separation of sources. The proposed separation algorithm exploits the assumed boundedness of the original sources and it has a simple update rule. The typical performance of the algorithm is illustrated through simulation examples where separation is achieved with only small numbers of iterations.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.identifier.doiN/A
dc.identifier.isbn0-7803-8874-7
dc.identifier.issn1520-6149
dc.identifier.scopus2-s2.0-33646809775
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12758
dc.identifier.wos229404204045
dc.keywordsEqualization
dc.languageEnglish
dc.publisherIEEE
dc.source2005 IEEE International Conference On Acoustics, Speech, and Signal Processing, Vols 1-5: Speech Processing
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical and electronic
dc.titleA blind separation approach for magnitude bounded sources
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files