Publication:
Analysis of copositive optimization based linear programming bounds on standard quadratic optimization

dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorSağol, Gizem
dc.contributor.kuauthorYıldırım, Emre Alper
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T12:25:28Z
dc.date.issued2015
dc.description.abstractThe problem of minimizing a quadratic form over the unit simplex, referred to as a standard quadratic optimization problem, admits an exact reformulation as a linear optimization problem over the convex cone of completely positive matrices. This computationally intractable cone can be approximated in various ways from the inside and from the outside by two sequences of nested tractable convex cones of increasing accuracy. In this paper, we focus on the inner polyhedral approximations due to YA +/- ldA +/- rA +/- m (Optim Methods Softw 27(1):155-173, 2012) and the outer polyhedral approximations due to de Klerk and Pasechnik (SIAM J Optim 12(4):875-892, 2002). We investigate the sequences of upper and lower bounds on the optimal value of a standard quadratic optimization problem arising from these two hierarchies of inner and outer polyhedral approximations. We give complete algebraic descriptions of the sets of instances on which upper and lower bounds are exact at any given finite level of the hierarchy. We identify the structural properties of the sets of instances on which upper and lower bounds converge to the optimal value only in the limit. We present several geometric and topological properties of these sets. Our results shed light on the strengths and limitations of these inner and outer polyhedral approximations in the context of standard quadratic optimization.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences Young Scientists Award Program (Turkish Academy of Sciences (TÜBA) - GEBIP)
dc.description.versionAuthor's final manuscript
dc.description.volume63
dc.formatpdf
dc.identifier.doi10.1007/s10898-015-0269-4
dc.identifier.eissn1573-2916
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01075
dc.identifier.issn0925-5001
dc.identifier.linkhttps://doi.org/10.1007/s10898-015-0269-4
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84940440355
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1590
dc.identifier.wos360193000002
dc.keywordsCopositive cone
dc.keywordsCompletely positive cone
dc.keywordsStandard quadratic optimization
dc.keywordsPolyhedral approximations
dc.languageEnglish
dc.publisherSpringer
dc.relation.grantno112M870
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/6066
dc.sourceJournal of Global Optimization
dc.subjectOperations research and management science
dc.subjectApplied mathematics
dc.titleAnalysis of copositive optimization based linear programming bounds on standard quadratic optimization
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSağol, Gizem
local.contributor.kuauthorYıldırım, Emre Alper
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
6066.pdf
Size:
308.08 KB
Format:
Adobe Portable Document Format