Publication:
Broadband enhancement of Faraday effect using magnetoplasmonic metasurfaces

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorKharratian, Soheila
dc.contributor.kuauthorOnbaşlı, Mehmet Cengiz
dc.contributor.kuauthorÜrey, Hakan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T12:40:18Z
dc.date.issued2020
dc.description.abstractMagnetooptical Faraday effect enables ultrafast photonic devices based on nonreciprocal polarization rotation; however, the intrinsic weakness of Faraday effect prevents miniaturization and practical applications of nonreciprocal photonic devices. Magnetoplasmonics offers new mechanisms for enhancing magnetooptical effects using surface plasmon resonances, which generally have narrow bandwidths. Using finite-difference time-domain modeling, we demonstrate a magnetoplasmonic metasurface, which remarkably enhances the Faraday effect in a wide spectral range. While Faraday rotation in a bare bismuth-substituted yttrium iron garnet film is below 0.02 degrees in the studied range of 600-1600 nm, the proposed metasurface yields few degrees of rotation in a broad band with a maximum exceeding 6.5 degrees, which indicates about three orders of magnitude enhancement. We also show that by optimizing the configuration of the system including the geometry and excitation parameters, the metasurface response and operation band can be tuned further, and rotation values higher than 20 degrees can be achieved. Finally, we present guidelines for designing magnetoplasmonic metasurfaces.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipEuropean Research Council (ERC), Advanced Grant (ERC-AdG) Wear3D Project
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)-GEBIP Award by the Turkish Academy of Sciences
dc.description.versionAuthor's final manuscript
dc.description.volume16
dc.identifier.doi10.1007/s11468-020-01304-6
dc.identifier.eissn1557-1963
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02397
dc.identifier.issn1557-1955
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85094831381
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2176
dc.identifier.wos583134200001
dc.keywordsMagnetooptics
dc.keywordsPlasmonics
dc.keywordsFaraday effect
dc.keywordsMetasurfaces
dc.language.isoeng
dc.publisherSpringer
dc.relation.grantno340200
dc.relation.grantno119S362
dc.relation.ispartofPlasmonics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9033
dc.subjectChemistry, physical
dc.subjectNanoscience and nanotechnology
dc.subjectMaterials science
dc.titleBroadband enhancement of Faraday effect using magnetoplasmonic metasurfaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKharratian, Soheila
local.contributor.kuauthorÜrey, Hakan
local.contributor.kuauthorOnbaşlı, Mehmet Cengiz
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9033.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format