Publication:
Affective burst detection from speech using Kernel-fusion dilated convolutional neural networks

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorKöprü, Berkay
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-10T00:05:57Z
dc.date.issued2022
dc.description.abstractAs speech interfaces are getting richer and widespread, speech emotion recognition promises more attractive applications. In the continuous emotion recognition (CER) problem, tracking changes across affective states is an essential and desired capability. Although CER studies widely use correlation metrics in evaluations, these metrics do not always capture all the high-intensity changes in the affective domain. In this paper, we define a novel affective burst detection problem to capture high-intensity changes of the affective attributes accurately. We formulate a two-class classification approach to isolate affective burst regions over the affective state contour for this problem. The proposed classifier is a kernel-fusion dilated convolutional neural network (KFDCNN) architecture driven by speech spectral features to segment the affective attribute contour into idle and burst sections. Experimental evaluations are performed on the RECOLA and CreativeIT datasets. The proposed KFDCNN outperforms baseline feedforward neural networks on both datasets.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.isbn978-90-827970-9-1
dc.identifier.issn2076-1465
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85141010480
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16532
dc.identifier.wos918827600022
dc.keywordsEmotion recognition
dc.keywordsAffective burst detection
dc.keywordsKernel fusion
dc.keywordsConvolutional neural networks
dc.keywordsSpeech analysis
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2022 30th European Signal Processing Conference (Eusipco 2022)
dc.subjectAcoustics
dc.subjectComputer science
dc.subjectSoftware engineering
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.subjectTelecommunications
dc.titleAffective burst detection from speech using Kernel-fusion dilated convolutional neural networks
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorKöprü, Berkay
local.contributor.kuauthorErzin, Engin
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05659.pdf
Size:
10.9 MB
Format:
Adobe Portable Document Format