Publication:
Robust & optimal model predictive controller design for twin rotor MIMO system

dc.contributor.coauthorFerman, A. Müfit
dc.contributor.coauthorMehrotra, Rajiv
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:52:52Z
dc.date.issued2002
dc.description.abstractEffective and efficient representation of color features of multiple video frames or pictures is an important yet challenging task for visual information management systems. Key frame-based methods to represent the color features of a group of frames (GoF) are highly dependent on the selection criterion of the representative frame(s), and may lead to unreliable results. In this paper, we present various histogram-based color descriptors to reliably capture and represent the color properties of multiple images or a GoF. One family of such descriptors, called alpha-trimmed average histograms, combine individual frame or image histograms using a specific filtering operation to generate robust color histograms that can eliminate the adverse effects of brightness/color variations, occlusion, and edit effects on the color representation. We show the efficacy of the alpha-trimmed average histograms for video segment retrieval applications, and illustrate how they consistently outperform key frame-based methods. Another color histogram descriptor that we introduce, called the intersection histogram, reflects the number of pixels of a given color that is common to all the frames in the GoF. We employ the intersection histogram to develop a fast and efficient algorithm for identification of the video segment to which a query frame belongs. The proposed color histogram descriptors have been included in the recently completed ISO standard MPEG-7 after extensive evaluation experiments.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume11
dc.identifier.doi10.1109/TIP.2002.1006397
dc.identifier.eissn1941-0042
dc.identifier.issn1057-7149
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-0036563560
dc.identifier.urihttps://doi.org/10.1109/TIP.2002.1006397
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14920
dc.identifier.wos176035800001
dc.keywordsColor descriptors
dc.keywordsImage/video databases
dc.keywordsMpeg-7
dc.keywordsVideo segment retrieval clustering methods
dc.keywordsImage
dc.language.isoeng
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartofIEEE Transactions on Image Processing
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectElectrical electronics engineering
dc.titleRobust & optimal model predictive controller design for twin rotor MIMO system
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorTekalp, Ahmet Murat
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files