Publication:
Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Systeme Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.

Source

Publisher

Elsevier

Subject

Optics, Spectroscopy

Citation

Has Part

Source

Journal of Quantitative Spectroscopy and Radiative Transfer

Book Series Title

Edition

DOI

10.1016/j.jqsrt.2017.12.023

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details