Publication: Multiparametric MRI–based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer
dc.contributor.coauthor | Mohamed, Rania M. | |
dc.contributor.coauthor | Panthi, Bikash | |
dc.contributor.coauthor | Adrada, Beatriz E. | |
dc.contributor.coauthor | Candelaria, Rosalind P. | |
dc.contributor.coauthor | Chen, Huiqin | |
dc.contributor.coauthor | Guirguis, Mary S. | |
dc.contributor.coauthor | Hunt, Kelly K. | |
dc.contributor.coauthor | Huo, Lei | |
dc.contributor.coauthor | Hwang, Ken-Pin | |
dc.contributor.coauthor | Korkut, Anıl | |
dc.contributor.coauthor | Litton, Jennifer K. | |
dc.contributor.coauthor | Moseley, Tanya W. | |
dc.contributor.coauthor | Pashapoor, Sanaz | |
dc.contributor.coauthor | Patel, Miral M. | |
dc.contributor.coauthor | Reed, Brandy | |
dc.contributor.coauthor | Scoggins, Marion E. | |
dc.contributor.coauthor | Son, Jong Bum | |
dc.contributor.coauthor | Thompson, Alastair | |
dc.contributor.coauthor | Tripathy, Debu | |
dc.contributor.coauthor | Valero, Vicente | |
dc.contributor.coauthor | Wei, Peng | |
dc.contributor.coauthor | White, Jason | |
dc.contributor.coauthor | Whitman, Gary J. | |
dc.contributor.coauthor | Xu, Zhan | |
dc.contributor.coauthor | Yang, Wei | |
dc.contributor.coauthor | Yam, Clinton | |
dc.contributor.coauthor | Ma, Jingfei | |
dc.contributor.coauthor | Rauch, Gaiane M. | |
dc.contributor.department | KUH (Koç University Hospital) | |
dc.contributor.department | School of Medicine | |
dc.contributor.kuauthor | Böge, Medine | |
dc.contributor.schoolcollegeinstitute | KUH (KOÇ UNIVERSITY HOSPITAL) | |
dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
dc.date.accessioned | 2024-12-29T09:39:47Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline;had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC. © The Author(s) 2024. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 1 | |
dc.description.openaccess | Gold Open Access | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | Supported by the University of Texas MD Anderson Moon Shots Program and Robert D. Moreton Distinguished Chair Funds in Diagnostic Radiology. We thank Stephanie Deming, senior scientific editor, Research Medical Library, MD Anderson Cancer Center, for editing the article. | |
dc.description.volume | 14 | |
dc.identifier.doi | 10.1038/s41598-024-66220-9 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85198439664 | |
dc.identifier.uri | https://doi.org/10.1038/s41598-024-66220-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/23096 | |
dc.identifier.wos | 1270345500006 | |
dc.keywords | Diffusion-weighted imaging | |
dc.keywords | Dynamic contrast-enhanced breast MRI | |
dc.keywords | Neoadjuvant systemic therapy | |
dc.keywords | Radiomic features | |
dc.keywords | Treatment response | |
dc.keywords | Triple-negative breast cancer | |
dc.language.iso | eng | |
dc.publisher | Nature Research | |
dc.relation.ispartof | Scientific Reports | |
dc.subject | Adult | |
dc.subject | Aged | |
dc.subject | Female | |
dc.subject | Humans | |
dc.subject | Magnetic resonance imaging | |
dc.subject | Middle aged | |
dc.subject | Multiparametric magnetic resonance imaging | |
dc.subject | Neoadjuvant therapy | |
dc.subject | Radiomics | |
dc.subject | ROC Curve | |
dc.subject | Treatment outcome | |
dc.subject | Triple negative breast neoplasms | |
dc.title | Multiparametric MRI–based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Böge, Medine | |
local.publication.orgunit1 | SCHOOL OF MEDICINE | |
local.publication.orgunit1 | KUH (KOÇ UNIVERSITY HOSPITAL) | |
local.publication.orgunit2 | KUH (Koç University Hospital) | |
local.publication.orgunit2 | School of Medicine | |
relation.isOrgUnitOfPublication | f91d21f0-6b13-46ce-939a-db68e4c8d2ab | |
relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
relation.isOrgUnitOfPublication.latestForDiscovery | f91d21f0-6b13-46ce-939a-db68e4c8d2ab | |
relation.isParentOrgUnitOfPublication | 055775c9-9efe-43ec-814f-f6d771fa6dee | |
relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 055775c9-9efe-43ec-814f-f6d771fa6dee |
Files
Original bundle
1 - 1 of 1