Publication: Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair
Program
KU-Authors
KU Authors
Co-Authors
Stauber, Tino
Levinson, Clara
Cavalli, Emma
Arlov, Oystein
Zenobi-Wong, Marcy
Advisor
Publication Date
2020
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
The native cartilage extracellular matrix (ECM) is enriched in sulfated glycosaminoglycans with important roles in the signaling and phenotype of resident chondrocytes. Recapitulating the key ECM components within engineered tissues through biomimicking strategies has potential to improve the regenerative capacity of encapsulated cells and lead to better clinical outcome. Here, we developed a double-modified, biomimetic and tissue adhesive hydrogel for cartilage engineering. We demonstrated sequential modification of alginate with first sulfate moieties to mimic the high glycosaminoglycan content of native cartilage and then tyramine moieties to allow in situ enzymatic crosslinking with tyrosinase under physiological conditions. Tyrosinase-crosslinked alginate sulfate tyramine (ASTA) hydrogels showed strong adhesion to native cartilage tissue with higher bond strength compared to alginate tyramine (AlgTA). Both ASTA and AlgTA hydrogels supported the viability of encapsulated bovine chondrocytes and induced a strong increase in the expression of chondrogenic genes such as collagen 2, aggrecan and Sox9. Aggrecan and Sox9 gene expression of chondrocytes in ASTA hydrogels were significantly higher than those in AlgTA. Chondrocytes in both ASTA and AlgTA hydrogels showed potent deposition of cartilage matrix components collagen 2 and aggrecan after 3 weeks of culture whereas a decreased collagen 1 deposition was observed in the sulfated hydrogels. ASTA and AlgTA hydrogels with encapsulated human chondrocytes showed in vivo stability as well as cartilage matrix deposition upon subcutaneous implantation into mice for 4 weeks. Our data is the first demonstration of a double-modified alginate with sulfation and tyramination that allows in situ enzymatic crosslinking, strong adhesion to native cartilage and chondrogenic re-differentiation.
Description
Source:
Biomedical Materials
Publisher:
Keywords:
Subject
Engineering, Biomedical engineering, Materials science, Biomaterials