Publication:
Drug-Centric Prior Improves Drug Response Modeling in Partially Overlapping Pharmacogenomic Screens

dc.conference.date2025-01-12 through 2025-01-14
dc.conference.locationAtlanta
dc.contributor.coauthorThirumalaisamy, Dharani (58188524100)
dc.contributor.coauthorJoshi, Sunil Kumar (57201863053)
dc.contributor.coauthorKurtz, Stephen E. (7201918813)
dc.contributor.coauthorVu, Tania Q. (35520412800)
dc.contributor.coauthorTyner, Jeffrey W. (8706106300)
dc.contributor.coauthorGönen, Mehmet (23569447100)
dc.contributor.coauthorNikolova, Olga (16643327500)
dc.date.accessioned2025-12-31T08:20:33Z
dc.date.available2025-12-31
dc.date.issued2026
dc.description.abstractWith the accumulation of large-scale genomic data such as whole-genome RNA sequencing, copy number, and mutation profiles for tens of thousands of samples, associated with screening thousands of small molecules and other perturbagens, arises the question of how to best leverage partially overlapping datasets generated at different facilities. As research groups across the world continue to generate drug screens of variable size and quality, the need for approaches that can learn from such partially overlapping experiments and improve the signal to noise ratio emerges with increasing importance. We present an application of a Bayesian group factor analysis model, where we employ a drug-centric prior to transfer information about drugs screened in the same samples in multiple datasets. We show that joint models leveraging partially overlapping pharmacogenomic datasets from the Broad and Sanger institutes can overall improve drug signature identification. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorship(K22CA258799)
dc.identifier.doi10.1007/978-3-032-02489-3_13
dc.identifier.embargoNo
dc.identifier.endpage182
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9783032004949
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.issn0302-9743
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105021396099
dc.identifier.startpage171
dc.identifier.urihttps://doi.org/10.1007/978-3-032-02489-3_13
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31532
dc.identifier.volume15599 LNCS
dc.keywordsBayesian modeling
dc.keywordsDrug response
dc.keywordsGroup factor analysis
dc.keywordsMitogen-activated protein kinase (MAPK) pathway
dc.keywordsPharmacogenomics
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.ispartof13th International Conference on Computational Advances in Bio and Medical Sciences, ICCABS 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDrug-Centric Prior Improves Drug Response Modeling in Partially Overlapping Pharmacogenomic Screens
dc.typeConference Proceeding
dspace.entity.typePublication

Files