Publication:
Machine learning models for predicting in-hospital mortality in burn patients

dc.contributor.coauthorSahin, Samet
dc.contributor.coauthorYavuz, Burak
dc.contributor.coauthorAkin, Merve
dc.contributor.coauthorAkgun, Ali Emre
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.kuauthorDoctor, Karaca, Onur
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.date.accessioned2025-09-10T04:56:34Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractAIM: To develop and evaluate predictive models for in-hospital mortality in burn patients using machine learning (ML) techniques. METHODS: A retrospective cohort study was conducted using data from burn patients admitted to Ankara Bilkent City Hospital Burn Treatment Center between 2015 and 2020. Key variables including age, gender, total body surface area burned, burn depth, burn type, inhalation injury, inflammatory markers and inflammatory indexes were collected. Seven ML models-Logistic Regression, Random Forest, Support Vector Machine, Decision Tree, K-Nearest Neighbors, Naive Bayes, and Gradient Boosting-were trained and evaluated. RESULTS: The cohort included 218 patients (mean age 42.5 +/- 18.5 years; 69.7% male, 30.3% female), with an in-hospital mortality rate of 18.8% (n =41). Logistic Regression had the best performance (accuracy: 88.6%, Receiver Operating Characteristic (ROC)-Area Under Curve (AUC): 0.906), while Random Forest achieved the highest accuracy (90.9%) and recall (97.2%).K-Nearest Neighbors excelled in recall (99.0%), Gradient Boosting balanced precision and recall (91.6% each, ROC-AUC: 0.744), and Support Vector Machine showed moderate results (accuracy: 84.0%, ROC-AUC: 0.864). CONCLUSIONS: ML models, particularly Logistic Regression and Random Forest, demonstrated strong predictive capabilities for mortality in burn patients. This study supports the potential for ML in burn care, offering a data-driven approach for personalized prognosis and clinical decision-making. Further multicenter validation is recommended.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.versionPublished Version
dc.description.volume96
dc.identifier.doi10.62713/aic.3944
dc.identifier.eissn2239-253X
dc.identifier.embargoNo
dc.identifier.endpage1046
dc.identifier.filenameinventorynoIR06394
dc.identifier.issn0003-469X
dc.identifier.issue8
dc.identifier.quartileQ4
dc.identifier.startpage1039
dc.identifier.urihttps://doi.org/10.62713/aic.3944
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30174
dc.identifier.wos001553718000007
dc.keywordsBurns
dc.keywordsMachine learning
dc.keywordsRisk assessment
dc.language.isoeng
dc.publisherEdizioni Luigi Pozzi
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAnnali Italiani di Chirurgia
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSurgery
dc.titleMachine learning models for predicting in-hospital mortality in burn patients
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06394.pdf
Size:
539.46 KB
Format:
Adobe Portable Document Format