Publication:
Spatially augmented speech bubble to character association via comic multi-task learning

Placeholder

Program

School / College / Institute

College of Engineering
GRADUATE SCHOOL OF SCIENCES AND ENGINEERING

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Accurately associating speech bubbles with corresponding characters is a challenging yet crucial task in comic book processing. This problem is gaining increased attention as it enhances the accessibility and analyzability of this rapidly growing medium. Current methods often struggle with the complex spatial relationships within comic panels, which lead to inconsistent associations. To address these short-comings, we developed a robust machine learning framework that leverages novel negative sampling methods, optimized pair-pool processes (the process of selecting speech bubble-character pairs during training) based on intra-panel spatial relationships, and an innovative masking strategy specifically designed for the relation branch of our model. Our approach builds upon and significantly enhances the COMIC MTL framework, improving its efficiency and accuracy in handling the unique challenges of comic book analysis. Finally, we conducted extensive experiments that demonstrate our model achieves state-of-the-art performance in linking characters to their speech bubbles. Moreover, through meticulous optimization of each component-from data preprocessing to neural network architecture-our method shows notable improvements in character face and body detection, as well as speech bubble segmentation.

Source

Publisher

Springer International Publishing AG

Subject

Computer science

Citation

Has Part

Source

DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024 WORKSHOPS, PT I

Book Series Title

Edition

DOI

10.1007/978-3-031-70645-5_15

item.page.datauri

Link

Rights

Rights URL (CC Link)

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details