Publication:
The convective cahn-hilliard equation

dc.contributor.coauthorEden, A.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKalantarov, Varga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:38:19Z
dc.date.issued2007
dc.description.abstractWe consider the convective Cahn–Hilliard equation with periodic boundary conditions as an infinite dimensional dynamical system and establish the existence of a compact attractor and a finite dimensional inertial manifold that contains it. Moreover, Gevrey regularity of solutions on the attractor is established and used to prove that four nodes are determining for each solution on the attractor.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume20
dc.identifier.doi10.1016/j.aml.2006.05.014
dc.identifier.issn0893-9659
dc.identifier.scopus2-s2.0-33751350259
dc.identifier.urihttps://doi.org/10.1016/j.aml.2006.05.014
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12942
dc.identifier.wos245379300018
dc.keywordsGlobal existence
dc.keywordsattractor
dc.keywordsCahn-Hilliard equation
dc.keywordsSivashinsky Equation
dc.language.isoeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofApplied Mathematics Letters
dc.subjectMathematics
dc.subjectApplied mathematics
dc.titleThe convective cahn-hilliard equation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKalantarov, Varga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files