Publication:
Combining molecular simulations and machine learning to unlock gas separation performances of MOFs and MOF-based composites

dc.contributor.advisorKeskin, Seda
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorHarman, Hilal Dağlar
dc.contributor.programChemical and Biological Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.coverage.spatialİstanbul
dc.date.accessioned2024-11-09T22:02:50Z
dc.date.issued2024
dc.format.extentxix, 236 leaves : illustrations ; 30 cm.
dc.identifier.urihttps://hdl.handle.net/20.500.14288/4575
dc.language.isoeng
dc.publisherKoç University
dc.relation.collectionKU Theses and Dissertations
dc.rightsrestrictedAccess
dc.rights.copyrightsnote© All Rights Reserved. Accessible to Koç University Affiliated Users Only!
dc.subjectPorous materials
dc.subjectGases, Separation
dc.subjectComposite materials
dc.titleCombining molecular simulations and machine learning to unlock gas separation performances of MOFs and MOF-based composites
dc.typeDissertation
dspace.entity.typePublication
local.contributor.kuauthorHarman, Hilal Dağlar
relation.isAdvisorOfThesis8cf1edd5-df6e-424d-82cd-98cb2a079858
relation.isAdvisorOfThesis.latestForDiscovery8cf1edd5-df6e-424d-82cd-98cb2a079858
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
28767.pdf
Size:
15.76 MB
Format:
Adobe Portable Document Format