Publication: SVM for sketch recognition: which hyperparameter interval to try ?
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.kuauthor | Çakmak, Şerike | |
dc.contributor.kuauthor | Şen, Cansu | |
dc.contributor.kuauthor | Sezgin, Tevfik Metin | |
dc.contributor.kuauthor | Yeşilbek, Kemal Tuğrul | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.date.accessioned | 2024-11-09T23:05:25Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Hyperparameters are among the most crucial factors that effect the performance of machine learning algorithms. Since there is not a common ground on which hyperparameter combinations give the highest performance in terms of prediction accuracy, hyperparameter search needs to be conducted each time a model is to be trained. In this work, we analyzed how similar hyperparemeters perform on various datasets from sketch recognition domain. Results have shown that hyperparameter search space can be reduced to a subspace despite differences in dataset characteristics. | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | WOS | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.identifier.doi | 10.1109/SIU.2015.7129986 | |
dc.identifier.isbn | 9781-4673-7386-9 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-84939126754 | |
dc.identifier.uri | https://doi.org/10.1109/SIU.2015.7129986 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/8803 | |
dc.keywords | Hyperparameter search | |
dc.keywords | sketch data | |
dc.keywords | Support Vector Machines Learning algorithms | |
dc.keywords | Support vector machines | |
dc.keywords | Common ground | |
dc.keywords | Cross validation | |
dc.keywords | Grid search | |
dc.keywords | Hyper-parameter | |
dc.keywords | Hyperparameters | |
dc.keywords | Prediction accuracy | |
dc.keywords | sketch data | |
dc.keywords | Sketch recognition | |
dc.keywords | Signal processing | |
dc.language.iso | tur | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings | |
dc.subject | Computer engineering | |
dc.title | SVM for sketch recognition: which hyperparameter interval to try ? | |
dc.title.alternative | Çizim tanıma için DVM: hangi hiper-parametre aralığı denenmeli ? | |
dc.type | Conference Proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Sezgin, Tevfik Metin | |
local.contributor.kuauthor | Şen, Cansu | |
local.contributor.kuauthor | Yeşilbek, Kemal Tuğrul | |
local.contributor.kuauthor | Çakmak, Şerike | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit2 | Department of Computer Engineering | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |