Publication:
SVM for sketch recognition: which hyperparameter interval to try ?

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorÇakmak, Şerike
dc.contributor.kuauthorŞen, Cansu
dc.contributor.kuauthorSezgin, Tevfik Metin
dc.contributor.kuauthorYeşilbek, Kemal Tuğrul
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:05:25Z
dc.date.issued2015
dc.description.abstractHyperparameters are among the most crucial factors that effect the performance of machine learning algorithms. Since there is not a common ground on which hyperparameter combinations give the highest performance in terms of prediction accuracy, hyperparameter search needs to be conducted each time a model is to be trained. In this work, we analyzed how similar hyperparemeters perform on various datasets from sketch recognition domain. Results have shown that hyperparameter search space can be reduced to a subspace despite differences in dataset characteristics.
dc.description.indexedbyScopus
dc.description.indexedbyWOS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.identifier.doi10.1109/SIU.2015.7129986
dc.identifier.isbn9781-4673-7386-9
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84939126754
dc.identifier.urihttps://doi.org/10.1109/SIU.2015.7129986
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8803
dc.keywordsHyperparameter search
dc.keywordssketch data
dc.keywordsSupport Vector Machines Learning algorithms
dc.keywordsSupport vector machines
dc.keywordsCommon ground
dc.keywordsCross validation
dc.keywordsGrid search
dc.keywordsHyper-parameter
dc.keywordsHyperparameters
dc.keywordsPrediction accuracy
dc.keywordssketch data
dc.keywordsSketch recognition
dc.keywordsSignal processing
dc.language.isotur
dc.publisherIEEE
dc.relation.ispartof2015 23rd Signal Processing and Communications Applications Conference, SIU 2015 - Proceedings
dc.subjectComputer engineering
dc.titleSVM for sketch recognition: which hyperparameter interval to try ?
dc.title.alternativeÇizim tanıma için DVM: hangi hiper-parametre aralığı denenmeli ?
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorSezgin, Tevfik Metin
local.contributor.kuauthorŞen, Cansu
local.contributor.kuauthorYeşilbek, Kemal Tuğrul
local.contributor.kuauthorÇakmak, Şerike
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files