Publication:
Automatic road extraction from historical maps using deep learning techniques: a regional case study of Turkey in a German World War II map

dc.contributor.coauthorSertel, Elif
dc.contributor.departmentDepartment of History
dc.contributor.kuauthorEkim, Burak
dc.contributor.kuauthorKabadayı, Mustafa Erdem
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.date.accessioned2024-11-09T12:44:00Z
dc.date.issued2021
dc.description.abstractScanned historical maps are available from different sources in various scales and contents. Automatic geographical feature extraction from these historical maps is an essential task to derive valuable spatial information on the characteristics and distribution of transportation infrastructures and settlements and to conduct quantitative and geometrical analysis. In this research, we used the Deutsche Heereskarte 1:200,000 Türkei (DHK 200 Turkey) maps as the base geoinformation source to construct the past transportation networks using the deep learning approach. Five different road types were digitized and labeled to be used as inputs for the proposed deep learning-based segmentation approach. We adapted U-Net++ and ResneXt50_32×4d architectures to produce multi-class segmentation masks and perform feature extraction to determine various road types accurately. We achieved remarkable results, with 98.73% overall accuracy, 41.99% intersection of union, and 46.61% F1 score values. The proposed method can be implemented in DHK maps of different countries to automatically extract different road types and used for transfer learning of different historical maps.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipResearch and Innovation Program
dc.description.sponsorshipProject “Industrialisation and Urban Growth from the mid-nineteenth century Ottoman Empire to Contemporary Turkey in a Comparative Perspective, 1850–2000”
dc.description.sponsorshipUrbanOccupationsOETR
dc.description.versionPublisher version
dc.description.volume10
dc.identifier.doi10.3390/ijgi10080492
dc.identifier.eissn2220-9964
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03113
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85111567030
dc.identifier.urihttps://doi.org/10.3390/ijgi10080492
dc.identifier.wos689308400001
dc.keywordsConvolutional neural networks
dc.keywordsDeep learning
dc.keywordsFully convolutional networks
dc.keywordsHistorical maps
dc.keywordsRoad classification
dc.keywordsSegmentation
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.grantno679097
dc.relation.ispartofISPRS International Journal of Geo-Information
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9773
dc.subjectComputer science
dc.subjectInformation systems
dc.subjectPhysical geography
dc.subjectRemote sensing
dc.titleAutomatic road extraction from historical maps using deep learning techniques: a regional case study of Turkey in a German World War II map
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKabadayı, Mustafa Erdem
local.contributor.kuauthorEkim, Burak
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit2Department of History
relation.isOrgUnitOfPublicationbe8432df-d124-44c3-85b4-be586c2db8a3
relation.isOrgUnitOfPublication.latestForDiscoverybe8432df-d124-44c3-85b4-be586c2db8a3
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9773.pdf
Size:
5.49 MB
Format:
Adobe Portable Document Format