Publication:
Dependency parsing as a classification problem

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T11:59:09Z
dc.date.issued2006
dc.description.abstractThis paper presents an approach to dependency parsing which can utilize any standard machine learning (classification) algorithm. A decision list learner was used in this work. The training data provided in the form of a treebank is converted to a format in which each instance represents information about one word pair, and the classification indicates the existence, direction, and type of the link between the words of the pair. Several distinct models are built to identify the links between word pairs at different distances. These models are applied sequentially to give the dependency parse of a sentence, favoring shorter links. An analysis of the errors, attribute selection, and comparison of different languages is presented.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.identifier.doi10.3115/1596276.1596323
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02274
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85086489655
dc.identifier.urihttps://hdl.handle.net/20.500.14288/916
dc.language.isoeng
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.grantnoNA
dc.relation.ispartofCoNLL-X '06: Proceedings of the Tenth Conference on Computational Natural Language Learning
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8930
dc.subjectTreebank
dc.subjectSemantic roles
dc.subjectWord segmentation
dc.titleDependency parsing as a classification problem
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorYüret, Deniz
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8930.pdf
Size:
111.95 KB
Format:
Adobe Portable Document Format