Publication:
An information theoretic approach to classify cognitive states using fMRI

dc.contributor.coauthorOnal, Itir
dc.contributor.coauthorOzay, Mete
dc.contributor.coauthorFirat, Orhan
dc.contributor.coauthorVural, Fatos T. Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.departmentDepartment of Psychology
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:10:35Z
dc.date.issued2013
dc.description.abstractIn this study, an information theoretic approach is proposed to model brain connectivity during a cognitive processing task, measured by functional Magnetic Resonance Imaging (fMRI). For this purpose, a local mesh of varying size is formed around each voxel. The arc weights of each mesh are estimated using a linear regression model by minimizing the squared error. Then, the optimal mesh size for each sample, that represents the information distribution in the brain, is estimated by minimizing various information criteria which employ the mean square error of linear regression model. The estimated mesh size shows the degree of locality or degree of connectivity of the voxels for the underlying cognitive process. The samples are generated during an fMRI experiment employing item recognition (IR) and judgment of recency (JOR) tasks. For each sample, estimated arc weights of the local mesh with optimal size are used to classify whether it belongs to IR or JOR tasks. Results indicate that the suggested connectivity model with optimal mesh size for each sample represent the information distribution in the brain better than the state-of-the art methods.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipInstitute of Electrical and Electronic Engineers (IEEE)
dc.description.sponsorshipArtificial Intelligence Foundation (BAIF)
dc.identifier.doi10.1109/BIBE.2013.6701565
dc.identifier.isbn9781-4799-3163-7
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84894136089&doi=10.1109%2fBIBE.2013.6701565&partnerID=40&md5=99459c088a2ecaefad759d840712bac3
dc.identifier.scopus2-s2.0-84894136089
dc.identifier.urihttp://dx.doi.org/10.1109/BIBE.2013.6701565
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17336
dc.keywordsN/A
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source13th IEEE International Conference on BioInformatics and BioEngineering, IEEE BIBE 2013
dc.subjectEngineering
dc.subjectBiomedical engineering
dc.subjectMedical informatics
dc.titleAn information theoretic approach to classify cognitive states using fMRI
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.kuauthorÖztekin, İlke
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c

Files