Publication:
Line segmentation of individual demographic data from Arabic handwritten population registers of Ottoman Empire

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of History
dc.contributor.kuauthorCan, Yekta Said
dc.contributor.kuauthorKabadayı, Mustafa Erdem
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of History
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.contributor.yokid33267
dc.date.accessioned2024-11-09T22:51:14Z
dc.date.issued2021
dc.description.abstractRecently, more and more studies have applied state-of-the-art algorithms for extracting information from handwritten historical documents. Line segmentation is a vital stage in the HTR systems; it directly affects the character segmentation stage, which affects the recognition success. In this study, we first applied deep learning-based layout analysis techniques to detect individuals in the first Ottoman population register series collected between the 1840s and 1860s. Then, we used a star path planning algorithm-based line segmentation to the demographic information of these detected individuals in these registers. We achieved encouraging results from the selected regions, which could be used to recognize the text in these registers.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC) project: "Industrialisation and Urban Growth from the mid-nineteenth century Ottoman Empire to Contemporary Turkey in a Comparative Perspective, 1850-2000" under the European Union's Horizon 2020 research and innovation prog [679097] This work was supported by the European Research Council (ERC) project: "Industrialisation and Urban Growth from the mid-nineteenth century Ottoman Empire to Contemporary Turkey in a Comparative Perspective, 1850-2000" under the European Union's Horizon 2020 research and innovation program Grant Agreement No. 679097, acronym UrbanOccupationsOETR. M. Erdem Kabadayi is the principal investigator of UrbanOccupationsOETR.
dc.description.volume12916
dc.identifier.doi10.1007/978-3-030-86198-8_22
dc.identifier.eissn1611-3349
dc.identifier.isbn978-3-030-86198-8
dc.identifier.isbn978-3-030-86197-1
dc.identifier.issn0302-9743
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85114740018
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-030-86198-8_22
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6812
dc.identifier.wos711902100022
dc.keywordsLine segmentation
dc.keywordsConvolutional neural networks
dc.keywordsPage segmentation
dc.keywordsArabic document processing
dc.keywordsProjection profiles
dc.keywordsA* path planning
dc.languageEnglish
dc.publisherSpringer International Publishing Ag
dc.sourceDocument Analysis and Recognition, Icdar 2021 Workshops, Pt I
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectSoftware engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleLine segmentation of individual demographic data from Arabic handwritten population registers of Ottoman Empire
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-6614-0183
local.contributor.authorid0000-0003-3206-0190
local.contributor.kuauthorCan, Yekta Said
local.contributor.kuauthorKabadayı, Mustafa Erdem
relation.isOrgUnitOfPublicationbe8432df-d124-44c3-85b4-be586c2db8a3
relation.isOrgUnitOfPublication.latestForDiscoverybe8432df-d124-44c3-85b4-be586c2db8a3

Files