Publication:
Unsupervised dance figure analysis from video for dancing avatar animation

dc.contributor.coauthorErdem, C. E.
dc.contributor.coauthorErdem, A. T.
dc.contributor.coauthorAbaci, T.
dc.contributor.coauthorOzkan, M. K.
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorOfli, Ferda
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.contributor.yokid107907
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T23:27:54Z
dc.date.issued2008
dc.description.abstractThis paper presents a framework for unsupervised video analysis in the context of dance performances, where gestures and 3D movements of a dancer are characterized by repetition of a set of unknown dance figures. The system is trained in an unsupervised manner using Hidden Markov Models (HMMs) to automatically segment multi-view video recordings of a dancer into recurring elementary temporal body motion patterns to identify the dance figures. That is, a parallel HMM structure is employed to automatically determine the number and the temporal boundaries of different dance figures in a given dance video. The success of the analysis framework has been evaluated by visualizing these dance figures on a dancing avatar animated by the computed 3D analysis parameters. Experimental results demonstrate that the proposed framework enables synthetic agents and/or robots to learn dance figures from video automatically.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipTURKISH ACADEMY of ScienceS (TUBA)
dc.description.sponsorshipEuropeAN COMMISSION WITHIN FP6 [511568] THIS WORK HAS BEEN SUPPORTED BY TURKISH ACADEMY of ScienceS (TUBA) and EuropeAN COMMISSION WITHIN FP6 UNDER GRANT 511568 WITH THE ACRONYM 3DTV.
dc.identifier.doi10.1109/ICIP.2008.4712047
dc.identifier.eissnN/A
dc.identifier.isbn978-1-4244-1765-0
dc.identifier.issn1522-4880
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-69949132134
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2008.4712047
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11778
dc.identifier.wos265921400372
dc.keywordsUnsupervised human body motion analysis
dc.keywordsDance figure identification
dc.keywordsDancing avatar animation
dc.languageEnglish
dc.publisherIEEE
dc.source2008 15th IEEE International Conference on Image Processing, Vols 1-5
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleUnsupervised dance figure analysis from video for dancing avatar animation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-3918-3230
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-7515-3138
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorOfli, Ferda
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files