Publication:
Plasma-enhanced CVD synthesis and cytotoxic evaluation of graphitic carbon embedded - Fe3O4 nanoparticles

dc.contributor.coauthorBalci-Cagiran, Ozge
dc.contributor.coauthorMertdinc-Ulkuseven, Siddika
dc.contributor.coauthorSolati, Navid
dc.contributor.coauthorOnbasli, Kubra
dc.contributor.coauthorYagci-Acar, Havva
dc.contributor.coauthorAgaogullari, Duygu
dc.date.accessioned2025-12-31T08:23:20Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractThis study reports the synthesis of graphitic carbon embedded - Fe3O4 nanoparticles using a novel method that enables a low-temperature rapid process and includes cytotoxicity tests to evaluate their potential use in biomedical applications. In this study, graphitic carbon was grown on Fe3O4 core using a plasma-enhanced chemical vapor deposition (PE-CVD) system under an Ar-H-2-CH4 gas plasma at 650 degrees C for 15 min. X-ray diffractometry (XRD) and Raman spectroscopy investigations confirmed that Fe3O4 nanoparticles were embedded in graphitic carbon (Fe3O4@C). Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), along with transmission electron microscopy (TEM) equipped with EDS, also supported the carbon formation and nano-sized structure of the synthesized particles. Fe3O4@C nanoparticles exhibited soft magnetic properties with saturation magnetization (M-s) and coercivity (H-c) values of 69.27 emu/g and 97 Oe, respectively. Cytotoxicity assessment on HeLa and MCF7 cancer cells suggested biocompatibility at and below a dose of 100 mu g/mL after 24 h of exposure but a drop in cell viability at higher doses and longer incubation times, more on cancer cell lines than the healthy L929 cells. These results suggest that Fe3O4@C nanoparticles might be potential candidates for biomedical applications, including drug delivery, photothermal therapy, and magnetically-triggered operations.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [118F430]
dc.identifier.doi10.1016/j.ceramint.2025.05.002
dc.identifier.eissn1873-3956
dc.identifier.embargoNo
dc.identifier.issn0272-8842
dc.identifier.issue21
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1016/j.ceramint.2025.05.002
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31720
dc.identifier.volume51
dc.identifier.wos001555948000001
dc.keywordspowders: gas phase reaction
dc.keywordsmicrostructure-final
dc.keywordsCarbon
dc.keywordsBiomedical applications
dc.language.isoeng
dc.publisherELSEVIER SCI LTD
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofCERAMICS INTERNATIONAL
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMaterials Science
dc.titlePlasma-enhanced CVD synthesis and cytotoxic evaluation of graphitic carbon embedded - Fe3O4 nanoparticles
dc.typeJournal Article
dspace.entity.typePublication

Files