Publication:
Globally simple Heffter arrays H(n;k) when k≡0,3 (mod4)

dc.contributor.coauthorBurrage, Kevin
dc.contributor.coauthorDonovan, Diane M.
dc.contributor.coauthorCavenagh, Nicholas J.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorYazıcı, Emine Şule
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:45:01Z
dc.date.issued2020
dc.description.abstractSquare Heffter arrays are n×n arrays such that each row and each column contains k filled cells, each row and column sum is divisible by 2nk+1 and either x or −x appears in the array for each integer 1⩽x⩽nk. Archdeacon noted that a Heffter array, satisfying two additional conditions, yields a face 2-colourable embedding of the complete graph K2nk+1 on an orientable surface, where for each colour, the faces give a k-cycle system. Moreover, a cyclic permutation on the vertices acts as an automorphism of the embedding. These necessary conditions pertain to cyclic orderings of the entries in each row and each column of the Heffter array and are: (1) for each row and each column the sequential partial sums determined by the cyclic ordering must be distinct modulo 2nk+1; (2) the composition of the cyclic orderings of the rows and columns is equivalent to a single cycle permutation on the entries in the array. We construct Heffter arrays that satisfy condition (1) whenever (a) k≡0(mod4); or (b) n≡1(mod4) and k≡3(mod4); or (c) n≡0(mod4), k≡3(mod4) and n≫k. As corollaries to the above we obtain pairs of orthogonal k-cycle decompositions of K2nk+1.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK) 2219
dc.description.sponsorshipThe University of Queensland School of Mathematics and Physics
dc.description.versionAuthor's final manuscript
dc.description.volume343
dc.identifier.doi10.1016/j.disc.2019.111787
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02758
dc.identifier.issn0012-365X
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85077756565
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2424
dc.keywordsGlobally simple Heffter arrays
dc.keywordsHeffter arrays
dc.keywordsHeffter difference problem
dc.keywordsOrthogonal cycle decompositions
dc.language.isoeng
dc.publisherElsevier
dc.relation.grantnoNA
dc.relation.ispartofDiscrete Mathematics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9402
dc.subjectEmbedding
dc.subjectGenus
dc.subjectGenus distributions
dc.titleGlobally simple Heffter arrays H(n;k) when k≡0,3 (mod4)
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYazıcı, Emine Şule
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9402.pdf
Size:
269.07 KB
Format:
Adobe Portable Document Format