Publication:
Self-assembling multidomain peptide fibers with aromatic cores

dc.contributor.coauthorBakota, Erica L.
dc.contributor.coauthorHartgerink, Jeffrey D.
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorŞensoy, Özge
dc.contributor.kuauthorÖzgür, Beytullah
dc.contributor.kuauthorSayar, Mehmet
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid109820
dc.date.accessioned2024-11-09T23:06:43Z
dc.date.issued2013
dc.description.abstractSelf-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Here we describe the effects of substitution of aliphatic hydrophobic amino acids in the central domain of the peptide for the aromatic amino acids phenylalanine, tyrosine, and tryptophan. While the basic nanofibrous morphology is retained in all cases, selection of the particular core residues results in switching from antiparallel hydrogen bonding to parallel hydrogen bonding in addition to changes in nanofiber morphology and in hydrogel rheological properties. Peptide nanofiber assemblies are investigated by circular dichroism polarimetry, infrared spectroscopy, atomic force microscopy, transmission and scanning electron microscopy, oscillatory rheology, and molecular dynamics simulations. Results from this study will aid in designing next generation cell scaffolding materials.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipNational Science Foundation CAREER Award [DMR-0645474]
dc.description.sponsorshipRobert A. Welch Foundation [C1557]
dc.description.sponsorshipNIH [R01 DE021798-01A1]
dc.description.sponsorshipTUBITAK[112T496] This work was funded in part by the National Science Foundation CAREER Award (DMR-0645474), the Robert A. Welch Foundation (Grant No. C1557), the NIH (R01 DE021798-01A1), and TUBITAK(Project No. 112T496).
dc.description.volume14
dc.identifier.doi10.1021/bm4000019
dc.identifier.eissn1526-4602
dc.identifier.issn1525-7797
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-84877784491
dc.identifier.urihttp://dx.doi.org/10.1021/bm4000019
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9024
dc.identifier.wos319034600014
dc.keywordsAmyloid fibril formation
dc.keywordsNanofibers
dc.keywordsHydrogels
dc.keywordsForm
dc.keywordsDelivery
dc.keywordsRelease
dc.keywordsHelix
dc.keywordsWater
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.sourceBiomacromolecules
dc.subjectBiochemistry
dc.subjectMolecular biology
dc.subjectChemistry, organic
dc.titleSelf-assembling multidomain peptide fibers with aromatic cores
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5950-3436
local.contributor.authorid0000-0003-1413-0669
local.contributor.authorid0000-0003-0553-0353
local.contributor.kuauthorŞensoy, Özge
local.contributor.kuauthorÖzgür, Beytullah
local.contributor.kuauthorSayar, Mehmet
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files