Publication:
Large-scale and global maximization of the distance to instability

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMengi, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:27:10Z
dc.date.issued2018
dc.description.abstractThe larger the distance to instability from a matrix is, the more robustly stable the associated autonomous dynamical system is in the presence of uncertainties and typically the less severe transient behavior its solution exhibits. Motivated by these issues, we consider the maximization of the distance to instability of a matrix dependent on several parameters, a nonconvex optimization problem that is likely to be nonsmooth. In the first part we propose a globally convergent algorithm when the matrix is of small size and depends on a few parameters. In the second part we deal with the problems involving large matrices. We tailor a subspace framework that reduces the size of the matrix drastically. The strength of the tailored subspace framework is proven with a global convergence result as the subspaces grow and a superlinear rate-of-convergence result with respect to the subspace dimension.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume39
dc.identifier.doi10.1137/18M1177019
dc.identifier.eissn1095-7162
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01870
dc.identifier.issn0895-4798
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85058226717
dc.identifier.urihttps://doi.org/10.1137/18M1177019
dc.identifier.wos453731100011
dc.keywordsEigenvalue optimization
dc.keywordsMaximin optimization
dc.keywordsDistance to instability
dc.keywordsRobust stability
dc.keywordsSubspace framework
dc.keywordsLarge-scale optimization
dc.keywordsGlobal optimization
dc.keywordsEigenvalue perturbation theory
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics (SIAM)
dc.relation.grantnoNA
dc.relation.ispartofSIAM Journal on Matrix Analysis and Applications
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8552
dc.subjectMathematics
dc.titleLarge-scale and global maximization of the distance to instability
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMengi, Emre
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8552.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format