Publication: Probing protein folding dynamics using multivariate statistical techniques
dc.contributor.coauthor | Palazoglu, Ahmet | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | Department of Chemical and Biological Engineering | |
dc.contributor.kuauthor | Arkun, Yaman | |
dc.contributor.kuauthor | Erman, Burak | |
dc.contributor.kuauthor | Gürsoy, Attila | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.date.accessioned | 2024-11-09T23:02:29Z | |
dc.date.issued | 2009 | |
dc.description.abstract | The study of protein folding and its ramifications in biological contexts is at the heart of computational biology. In this paper, we discuss a number of tools in systems engineering that would provide an analysis framework to help explain the observed dynamic behavior of the protein, ultimately making the connection between protein structure and functionality. A case study of villin headpiece folding using principal components analysis as well as clustering demonstrates the potential of these tools in responding to this challenge. | |
dc.description.indexedby | Scopus | |
dc.description.issue | PART 1 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 7 | |
dc.identifier.doi | 10.3182/20090712-4-tr-2008.00025 | |
dc.identifier.isbn | 9783-9026-6154-8 | |
dc.identifier.issn | 1474-6670 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-79960940957 | |
dc.identifier.uri | https://doi.org/10.3182/20090712-4-tr-2008.00025 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/8295 | |
dc.keywords | Clustering | |
dc.keywords | Dynamic simulations | |
dc.keywords | Optimal folding trajectories | |
dc.keywords | Principal components analysis Chemical analysis | |
dc.keywords | Computer simulation | |
dc.keywords | Protein folding | |
dc.keywords | Proteins | |
dc.keywords | Analysis frameworks | |
dc.keywords | Clustering | |
dc.keywords | Computational biology | |
dc.keywords | Dynamic behaviors | |
dc.keywords | Multivariate statistical techniques | |
dc.keywords | Principal components analysis | |
dc.keywords | Protein folding dynamics | |
dc.keywords | Protein structures | |
dc.keywords | Multivariant analysis | |
dc.language.iso | eng | |
dc.publisher | IFAC | |
dc.relation.ispartof | IFAC Proceedings Volumes (IFAC-PapersOnline) | |
dc.subject | Chemical and biological engineering | |
dc.title | Probing protein folding dynamics using multivariate statistical techniques | |
dc.type | Conference Proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Arkun, Yaman | |
local.contributor.kuauthor | Gürsoy, Attila | |
local.contributor.kuauthor | Erman, Burak | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit2 | Department of Chemical and Biological Engineering | |
local.publication.orgunit2 | Department of Computer Engineering | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |