Publication:
Machine learning-enabled multiplexed microfluidic sensors

dc.contributor.coauthorYetişen, Ali Kemal
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentGraduate School of Social Sciences and Humanities
dc.contributor.departmentKUAR (KU Arçelik Research Center for Creative Industries)
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.kuauthorDabbagh, Sajjad Rahmani
dc.contributor.kuauthorDoğan, Zafer
dc.contributor.kuauthorRabbi, Fazle
dc.contributor.kuauthorTaşoğlu, Savaş
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-09T12:14:59Z
dc.date.issued2020
dc.description.abstractHigh-throughput, cost-effective, and portable devices can enhance the performance of point-of-care tests. Such devices are able to acquire images from samples at a high rate in combination with microfluidic chips in point-of-care applications. However, interpreting and analyzing the large amount of acquired data is not only a labor-intensive and time-consuming process, but also prone to the bias of the user and low accuracy. Integrating machine learning (ML) with the image acquisition capability of smartphones as well as increasing computing power could address the need for high-throughput, accurate, and automatized detection, data processing, and quantification of results. Here, ML-supported diagnostic technologies are presented. These technologies include quantification of colorimetric tests, classification of biological samples (cells and sperms), soft sensors, assay type detection, and recognition of the fluid properties. Challenges regarding the implementation of ML methods, including the required number of data points, image acquisition prerequisites, and execution of data-limited experiments are also discussed.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorship2232 International Fellowship for Outstanding Researchers Award
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipMarie Skodowska-Curie Individual Fellowship
dc.description.sponsorshipAlexander von Humboldt Research Fellowship for Experienced Researchers
dc.description.sponsorshipRoyal Academy Newton-Katip Celebi Transforming Systems Through Partnership Award
dc.description.sponsorshipAI Fellowship by KUIS AI
dc.description.versionAuthor's final manuscript
dc.description.volume14
dc.identifier.doi10.1063/5.0025462
dc.identifier.eissn1932-1058
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02611
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85099541574
dc.identifier.urihttps://doi.org/10.1063/5.0025462
dc.identifier.wos598100400001
dc.keywordsBiophysics
dc.keywordsNanoscience and nanotechnology
dc.keywordsPhysics
dc.keywordsFluids and plasmas
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.grantno118C391
dc.relation.grantno118C337
dc.relation.grantno101003361
dc.relation.ispartofIEEE Communications Letters
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9250
dc.subjectBiochemical research methods
dc.titleMachine learning-enabled multiplexed microfluidic sensors
dc.typeReview
dspace.entity.typePublication
local.contributor.kuauthorDabbagh, Sajjad Rahmani
local.contributor.kuauthorRabbi, Fazle
local.contributor.kuauthorDoğan, Zafer
local.contributor.kuauthorTaşoğlu, Savaş
local.publication.orgunit1GRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit1Research Center
local.publication.orgunit2KUTTAM (Koç University Research Center for Translational Medicine)
local.publication.orgunit2KUAR (KU Arçelik Research Center for Creative Industries)
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Social Sciences and Humanities
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicatione192fff1-4efe-45a7-ab71-30233fc185a9
relation.isOrgUnitOfPublication738de008-9021-4b5c-a60b-378fded7ef70
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationc5c9bf5f-4655-411c-a602-0d68f2e2ad88
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9250.pdf
Size:
876.23 KB
Format:
Adobe Portable Document Format