Publication:
Machine learning-enabled multiplexed microfluidic sensors

dc.contributor.coauthorYetişen, Ali Kemal
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorDabbagh, Sajjad Rahmani
dc.contributor.kuauthorRabbi, Fazle
dc.contributor.kuauthorDoğan, Zafer
dc.contributor.kuauthorTaşoğlu, Savaş
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.researchcenterKU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR)
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid280658
dc.contributor.yokid291971
dc.date.accessioned2024-11-09T12:14:59Z
dc.date.issued2020
dc.description.abstractHigh-throughput, cost-effective, and portable devices can enhance the performance of point-of-care tests. Such devices are able to acquire images from samples at a high rate in combination with microfluidic chips in point-of-care applications. However, interpreting and analyzing the large amount of acquired data is not only a labor-intensive and time-consuming process, but also prone to the bias of the user and low accuracy. Integrating machine learning (ML) with the image acquisition capability of smartphones as well as increasing computing power could address the need for high-throughput, accurate, and automatized detection, data processing, and quantification of results. Here, ML-supported diagnostic technologies are presented. These technologies include quantification of colorimetric tests, classification of biological samples (cells and sperms), soft sensors, assay type detection, and recognition of the fluid properties. Challenges regarding the implementation of ML methods, including the required number of data points, image acquisition prerequisites, and execution of data-limited experiments are also discussed.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorship2232 International Fellowship for Outstanding Researchers Award
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipMarie Skodowska-Curie Individual Fellowship
dc.description.sponsorshipAlexander von Humboldt Research Fellowship for Experienced Researchers
dc.description.sponsorshipRoyal Academy Newton-Katip Celebi Transforming Systems Through Partnership Award
dc.description.sponsorshipAI Fellowship by KUIS AI
dc.description.versionAuthor's final manuscript
dc.description.volume14
dc.formatpdf
dc.identifier.doi10.1063/5.0025462
dc.identifier.eissn1932-1058
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02611
dc.identifier.linkhttps://doi.org/10.1063/5.0025462
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85099541574
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1319
dc.identifier.wos598100400001
dc.keywordsBiophysics
dc.keywordsNanoscience and nanotechnology
dc.keywordsPhysics
dc.keywordsFluids and plasmas
dc.languageEnglish
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.grantno118C391
dc.relation.grantno118C337
dc.relation.grantno101003361
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9250
dc.sourceIEEE Communications Letters
dc.subjectBiochemical research methods
dc.titleMachine learning-enabled multiplexed microfluidic sensors
dc.typeReview
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authorid0000-0002-5078-4590
local.contributor.authorid0000-0003-4604-217X
local.contributor.kuauthorDabbagh, Sajjad Rahmani
local.contributor.kuauthorRabbi, Fazle
local.contributor.kuauthorDoğan, Zafer
local.contributor.kuauthorTaşoğlu, Savaş
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9250.pdf
Size:
876.23 KB
Format:
Adobe Portable Document Format