Publication:
Probing the Surface Chemistry of Lithium Nitridation

dc.contributor.coauthorEtxebarria, Ane (57216651502)
dc.contributor.coauthorAydogan Gokturk, Pinar (57207255703)
dc.contributor.coauthorYe, Yifan (55157588100)
dc.contributor.coauthorRoss, Phillip N. (55659598000)
dc.contributor.coauthorCrumlin, Ethan Jon (6505606756)
dc.contributor.coauthorMuñoz-Márquez, Miguel Ángel (57191783653)
dc.date.accessioned2025-12-31T08:23:29Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractChemical synthesis of Li<inf>3</inf>N through lithium nitridation has potential to advance rechargeable battery and nitrogen fixation technology. However, studies of the conditions for forming Li<inf>3</inf>N on the lithium surface via nitrogen gas exposure report contradictory findings, such as the spontaneous reaction of Li with pure N<inf>2</inf>, the impossibility of forming Li<inf>3</inf>N through pure Li and N<inf>2</inf>interaction, the requirement of trace H<inf>2</inf>O to catalyze the reaction, and evidence to the contrary. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) was applied to evaluate the in situ chemical evolution of the lithium metal surface under nitrogen gas up to 800 mTorr. At pressures ≤10 mTorr, no Li<inf>3</inf>N was detected. At higher pressures, surface Li<inf>3</inf>N rapidly reacts with trace CO<inf>2</inf>. Additionally, because metallic lithium is readily oxidized by trace gases, the atomic nitrogen concentration of the lithium surface remains below 2%. When nitridation follows oxidation by O<inf>2</inf>gas, CO<inf>2</inf>gas, or H<inf>2</inf>O vapor, surface Li<inf>3</inf>N formation is inhibited. These results suggest that nitrogen gas can diffuse through the oxidized lithium metal surface to react with subsurface metallic lithium. © 2025 The Authors. Published by American Chemical Society
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessAll Open Access; Green Accepted Open Access; Green Open Access; Hybrid Gold Open Access
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipBasic Energy Sciences, BES; U.S. Department of Energy, DOE; Eusko Jaurlaritza, (PRE_2018_2_0285); Office of Science, SC, (DE-AC02-05CH11231)
dc.identifier.doi10.1021/jacs.5c11781
dc.identifier.embargoNo
dc.identifier.endpage40406
dc.identifier.issn0002-7863
dc.identifier.issue44
dc.identifier.pubmed41139877
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105020665250
dc.identifier.startpage40398
dc.identifier.urihttps://doi.org/10.1021/jacs.5c11781
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31733
dc.identifier.volume147
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofJournal of the American Chemical Society
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.titleProbing the Surface Chemistry of Lithium Nitridation
dc.typeJournal Article
dspace.entity.typePublication

Files