Publication:
Optimization of capacitance in supercapacitors by constructing an experimentally validated hybrid artificial neural networks-genetic algorithm framework

dc.contributor.coauthorKaya, D.
dc.contributor.coauthorKoroglu, D.
dc.contributor.coauthorUralcan, B.
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorAydın, Erdal
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.researchcenterKoç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid311745
dc.date.accessioned2024-11-09T23:50:08Z
dc.date.issued2023
dc.description.abstractSupercapacitors are high power electrochemical energy storage systems that are attractive candidates for use in high power applications. Yet, their widespread adoption has been restricted due to their relatively low energy density. Improving the energy storage performance of supercapacitors is linked to rationally optimizing the key descriptors that affect capacitance. This work presents a systematic approach based on a hybrid artificial neural network (ANN) and genetic algorithm (GA) integrated with the Big M method to efficiently and rationally design carbon-based supercapacitors with improved energy storage performance. By performing structural and electrochemical characterization on systems we fabricate, we experimentally validate the robustness and generalizability of the developed ANN-GA framework. This study takes a step towards the rational design of supercapacitors by implementing the hybrid ANN-GA framework as an optimization tool to provide guidelines for rationally tuning material properties and operational conditions for improved capacitance. © 2023 Elsevier B.V.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume568
dc.identifier.doi10.1016/j.jpowsour.2023.232987
dc.identifier.issn0378-7753
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151016747&doi=10.1016%2fj.jpowsour.2023.232987&partnerID=40&md5=e4207de149a07af03bb132a6ebb9ae00
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85151016747
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14476
dc.identifier.wos970297300001
dc.keywordsExperimental validation
dc.keywordsGenetic algorithm
dc.keywordsMachine learning
dc.keywordsNeural networks
dc.keywordsOptimization
dc.keywordsSupercapacitors Capacitance
dc.keywordsEnergy storage
dc.keywordsGenetic algorithms
dc.keywordsLearning algorithms
dc.keywordsNeural networks
dc.keywordsStorage (materials)
dc.keywordsSupercapacitor
dc.keywordsAlgorithm framework
dc.keywordsElectrochemical energy storage
dc.keywordsExperimental validations
dc.keywordsHigh power
dc.keywordsHybrid artificial neural network
dc.keywordsMachine-learning
dc.keywordsNeural-networks
dc.keywordsOptimisations
dc.keywordsStorage performance
dc.keywordsStorage systems
dc.keywordsMachine learning
dc.languageEnglish
dc.publisherElsevier Ltd
dc.sourceJournal of Power Sources
dc.subjectCarbon
dc.subjectElectrode materials
dc.subjectCarbon nanofibers
dc.titleOptimization of capacitance in supercapacitors by constructing an experimentally validated hybrid artificial neural networks-genetic algorithm framework
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-8498-4830
local.contributor.kuauthorAydın, Erdal
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files