Publication: Seed-mediated synthesis of plasmonic gold nanoribbons using cancer cells for hyperthermia applications
Files
Program
KU Authors
Co-Authors
Singh, Ajay Vikram
Alapan, Yunus
Jahnke, Timotheus
Laux, Peter
Luch, Andreas
Aghakhani, Amirreza
Bill, Joachim
Sitti, Metin
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
A surfactant-less, seed mediated, biological synthesis of two dimensional (2-D) nanoribbons in the presence of breast cancer cells (MCF7) is demonstrated. The diameter and yield of nanoribbons are tunable via seeds and gold precursor concentration. Such crystalline nanoribbons serve to enhance the Raman signals over MCF7 cells. The side and slopes of the triangular nanoplatelets fused as nanoribbons exhibit plasmon excitement in quadrupole resonance modes in the infrared region. Consequently, when irradiated with an infrared laser they show an excellent photothermal effect and rapid rise in temperature. The experimental results verified by finite-difference time-domain (FTDT) calculations reveal the presence of wedge-plasmon polaritons propagating along the edges of the nanoribbons. These simulations confirm that long aspect ratio nanoribbon's edges and vertices act as an active optical waveguide, allowing for heat propagation along the long axis, killing cancer cells in the process at lower power doses.
Source:
Journal of Materials Chemistry B
Publisher:
Royal Society of Chemistry (RSC)
Keywords:
Subject
Materials science