Publication:
PySio: a new python toolbox for physiological signal visualization and feature analysis

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorGürsoy, Beren Semiz
dc.contributor.kuauthorNacitarhan, Özgün Ozan
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileUndergraduate Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid332403
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:00:47Z
dc.date.issued2022
dc.description.abstractIn physiological signal analysis, identifying meaningful relationships and inherent patterns in signals can provide valuable information regarding subjects' physiological state and changes. Although MATLAB has been widely used in signal processing and feature analysis, Python has recently dethroned MATLAB with the rise of data science, machine learning and artificial intelligence. Hence, there is a compelling need for a Python package for physiological feature analysis and extraction to achieve compatibility with downstream models often trained in Python. Thus, we present a novel visualization and feature analysis Python toolbox, PySio, to enable rapid, efficient and user-friendly analysis of physiological signals. First, the user should import the signal-of-interest with the corresponding sampling rate. After importing, the user can either analyze the signal as it is, or can choose a specific region for more detailed analysis. PySio enables the user to (i) visualize and analyze the physiological signals (or user-selected segments of the signals) in time domain, (ii) study the signals (or user-selected segments of the signals) in frequency domain through discrete Fourier transform and spectrogram representations, and (iii) investigate and extract the most common time (energy, entropy, zero crossing rate and peaks) and frequency (spectral entropy, rolloff, centroid, spread, peaks and bandpower) domain features, all with one click. Clinical relevance - As the physiological signals originate directly from the underlying physiological events, proper analysis of the signal patterns can provide valuable information in personalized treatment and wearable technology applications.
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume2022-July
dc.identifier.doi10.1109/EMBC48229.2022.9871174
dc.identifier.isbn9781-7281-2782-8
dc.identifier.issn1557-170X
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85138128818&doi=10.1109%2fEMBC48229.2022.9871174&partnerID=40&md5=74aef6a18d35cdf175d8d50f709a588e
dc.identifier.scopus2-s2.0-85138128818
dc.identifier.urihttp://dx.doi.org/10.1109/EMBC48229.2022.9871174
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8123
dc.keywordsArtificial intelligence
dc.keywordsEntropy
dc.keywordsFrequency domain analysis
dc.keywordsHeart
dc.keywordsHigh level languages
dc.keywordsSignal analysis
dc.keywordsTime domain analysis
dc.keywordsTime series analysis
dc.keywordsVisualization
dc.keywordsWearable technology
dc.keywordsFeature analysis
dc.keywordsInherent patterns
dc.keywordsMachine-learning
dc.keywordsPhysiological signals
dc.keywordsPhysiological state
dc.keywordsSignal features
dc.keywordsSignal processing analysis
dc.keywordsSignal visualizations
dc.keywordsSignals analysis
dc.keywordsVisualization analysis
dc.keywordsPython
dc.keywordsAlgorithm
dc.keywordsFourier analysis
dc.keywordsHuman
dc.keywordsMachine learning
dc.keywordsSignal processing
dc.keywordsAlgorithms
dc.keywordsFourier Analysis
dc.keywordsHumans
dc.keywordsMachine learning
dc.keywordsSignal processing, Computer-assisted
dc.languageEnglish
dc.publisherVerasonics
dc.sourceProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
dc.subjectArtificial intelligence
dc.subjectEntropy
dc.subjectTime-domain analysis
dc.subjectHeart
dc.titlePySio: a new python toolbox for physiological signal visualization and feature analysis
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7544-5974
local.contributor.authoridN/A
local.contributor.kuauthorGürsoy, Beren Semiz
local.contributor.kuauthorNacitarhan, Özgün Ozan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files