Publication: Exploring the efficiency of nitrogenated carbon quantum dots/TiO₂ S-scheme heterojunction in photodegradation of ciprofloxacin in aqueous environments
dc.contributor.coauthor | Ates, Yilmaz | |
dc.contributor.coauthor | Eroglu, Zafer | |
dc.contributor.coauthor | Acisli, Ozkan | |
dc.contributor.coauthor | Metin, Onder | |
dc.contributor.coauthor | Karaca, Semra | |
dc.contributor.department | Department of Chemistry | |
dc.contributor.department | KUYTAM (Koç University Surface Science and Technology Center) | |
dc.contributor.kuauthor | Metin, Önder | |
dc.contributor.kuauthor | Eroğlu, Zafer | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.schoolcollegeinstitute | Research Center | |
dc.date.accessioned | 2025-03-06T21:01:06Z | |
dc.date.issued | 2024 | |
dc.description.abstract | In this study, we developed a heterojunction photocatalyst, namely nitrogen-doped carbon quantum dots/titanium dioxide (N-CQDs/TiO2) for the effective and sustainable treatment of ciprofloxacin (CIP) antibiotic in aqueous solution. First, N-CQDs were prepared from a chitosan biopolymer with a green, facile, and effective hydrothermal carbonization technique and then anchored on the TiO2 surface via a hydrothermal process. The morphological, structural, and optical properties of the as-prepared materials were characterized by using advanced analytical techniques. The impacts of the mass percentage of N-CQDs, catalyst and CIP concentration, and pH on photocatalytic CIP degradation were investigated in depth. Comparative analyses were performed to evaluate different processes including adsorption, photolysis, and photocatalysis for the removal of CIP with TiO2 and N-CQDs/TiO2. The results revealed that N-CQDs/TiO2 exhibited the highest CIP removal efficiency of up to 83.91% within 120 min using UVA irradiation under optimized conditions (10 mg/L CIP, 0.4 g/L catalyst, and pH 5). Moreover, the carbon source used in the fabrication of N-CQDs was also considered, and lower removal efficiency was obtained when glucose was used as a carbon source instead of chitosan. This excellent improvement in CIP degradation was attributed to the ideal separation and migration of photogenerated carriers, strong redox capability, and high generation of reactive oxygen species provided by the successful construction of the N-CQDs/TiO2 S-scheme heterojunction. Scavenger experiments indicated that h(+) and center dot OH reactive oxygen species were the predominant factors for CIP elimination in water. Overall, this study presents a green synthesis approach for N-CQDs/TiO2 heterojunction photocatalysts using natural materials, demonstrating potential as a cost-effective and efficient method for pharmaceutical degradation in water treatment applications. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.indexedby | TR Dizin | |
dc.description.publisherscope | National | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsorship | The authors would like to express special thanks to Ataturk University for financial support (Project FHD-2021-8950) the East Anatolia High Technology Application and Research Center (DAYTAM) for technical support for material characterization. Y.A. thanks the Council of Higher Education (YOK/100-2000) . This work is based on a from the PhD dissertation of Y.A. OE.M. thanks the Turkish Academy of Science (TUBA) for partial financial support (Grant No. 2023) . | |
dc.identifier.doi | 10.55730/1300-0527.3679 | |
dc.identifier.grantno | Ataturk University [FHD-2021-8950];Council of Higher Education [YOK/100-2000];Turkish Academy of Science (TUBA) [2023] | |
dc.identifier.issn | 1300-0527 | |
dc.identifier.issue | 4 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-85203427976 | |
dc.identifier.uri | https://doi.org/10.55730/1300-0527.3679 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/27960 | |
dc.identifier.volume | 48 | |
dc.identifier.wos | 1314807000003 | |
dc.keywords | Carbon quantum dots | |
dc.keywords | Green synthesis | |
dc.keywords | TiO₂ | |
dc.keywords | S-scheme heterojunction | |
dc.keywords | Photocatalyst | |
dc.keywords | Ciprofloxacin degradation | |
dc.language.iso | eng | |
dc.publisher | Tubitak Scientific and Technological Research Council Turkey | |
dc.relation.ispartof | Turkish Journal of Chemistry | |
dc.subject | Chemistry, multidisciplinary | |
dc.subject | Engineering, chemical | |
dc.title | Exploring the efficiency of nitrogenated carbon quantum dots/TiO₂ S-scheme heterojunction in photodegradation of ciprofloxacin in aqueous environments | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit1 | Research Center | |
local.publication.orgunit2 | Department of Chemistry | |
local.publication.orgunit2 | KUYTAM (Koç University Surface Science and Technology Center) | |
relation.isOrgUnitOfPublication | 035d8150-86c9-4107-af16-a6f0a4d538eb | |
relation.isOrgUnitOfPublication | d41f66ba-d7a4-4790-9f8f-a456c391209b | |
relation.isOrgUnitOfPublication.latestForDiscovery | 035d8150-86c9-4107-af16-a6f0a4d538eb | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |