Publication:
Thermodynamic consistency of the optomechanical master equation

dc.contributor.coauthorXuereb, Andre
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorNaseem, Muhammad Tahir
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid1674
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:49:27Z
dc.date.issued2018
dc.description.abstractWe investigate the thermodynamic consistency of the master equation description of heat transport through an optomechanical system attached to two heat baths, one optical and one mechanical. We employ three different master equations to describe this scenario: (i) The standard master equation used in optomechanics, where each bath acts only on the resonator that it is physically connected to; (ii) the so-called dressed-state master equation, where the mechanical bath acts on the global system; and (iii) what we call the global master equation, where both baths are treated nonlocally and affect both the optical and mechanical subsystems. Our main contribution is to demonstrate that, under certain conditions including when the optomechanical coupling strength is weak, the second law of thermodynamics is violated by the first two of these pictures. In order to have a thermodynamically consistent description of an optomechanical system, therefore, one has to employ a global description of the effect of the baths on the system.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipCOST Action Quantum Technologies with Ultra-Cold Atoms
dc.description.sponsorshipEuropean Union's Horizon 2020 research and innovation programme
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipHorizon 2020
dc.description.versionPublisher version
dc.description.volume98
dc.formatpdf
dc.identifier.doi10.1103/PhysRevA.98.052123
dc.identifier.eissn2469-9934
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01540
dc.identifier.issn2469-9926
dc.identifier.linkhttps://doi.org/10.1103/PhysRevA.98.052123
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85057186669
dc.identifier.urihttps://hdl.handle.net/20.500.14288/645
dc.identifier.wos450960700002
dc.languageEnglish
dc.publisherAmerican Physical Society (APS)
dc.relation.grantno117F097
dc.relation.grantnoCA16221
dc.relation.grantno732894
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8145
dc.sourcePhysical Review A
dc.subjectOptics
dc.subjectPhysics
dc.titleThermodynamic consistency of the optomechanical master equation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9134-3951
local.contributor.authoridN/A
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorNaseem, Muhammad Tahir
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8145.pdf
Size:
477.56 KB
Format:
Adobe Portable Document Format