Publication:
Roughness perception of virtual textures displayed by electrovibration on touch screens

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Advisor

Publication Date

2017

Language

English

Type

Conference proceeding

Journal Title

Journal ISSN

Volume Title

Abstract

In this study, we have investigated the human roughness perception of periodical textures on an electrostatic display by conducting psychophysical experiments with 10 subjects. To generate virtual textures, we used low frequency unipolar pulse waves in different waveform (sinusoidal, square, saw-tooth, triangle), and spacing. We modulated these waves with a 3kHz high frequency sinusoidal carrier signal to minimize perceptional differences due to the electrical filtering of human finger and eliminate low-frequency distortions. The subjects were asked to rate 40 different macro textures on a Likert scale of 1-7. We also collected the normal and tangential forces acting on the fingers of subjects during the experiment. The results of our user study showed that subjects perceived the square wave as the roughest while they perceived the other waveforms equally rough. The perceived roughness followed an inverted U-shaped curve as a function of groove width, but the peak point shifted to the left compared to the results of the earlier studies. Moreover, we found that the roughness perception of subjects is best correlated with the rate of change of the contact forces rather than themselves.

Description

Source:

2017 IEEE World Haptics Conference (Whc)

Publisher:

IEEE

Keywords:

Subject

Electrical electronics engineering, Mechanical engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details